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Abstract. The model of interaction between learning and evolution is designed 
and investigated. The evolving population of modeled organisms is considered. 
The mechanism of the genetic assimilation of the acquired features during a 
number of generations of Darwinian evolution is studied. It is shown that the 
genetic assimilation takes place as follows: phenotypes of modeled organisms 
move towards the optimum at learning; then the selection takes place; geno-
types of selected organisms also move towards the optimum. The hiding effect 
is also studied; this effect means that strong learning can inhibit the evolution-
ary search for the optimal genotype. The mechanism of influence of the learn-
ing load on the interaction between learning and evolution is analyzed. It is 
shown that the learning load can lead to a significant acceleration of evolution. 

Keywords: Speed and efficiency of evolutionary search, genetic assimilation, 
hiding effect, learning load. 

1 Introduction 

A number of authors analyzed interactions between learning and evolution by means 
of computer simulations [1-4]. In particular, Hinton and Nowlan [3] demonstrated that 
learning can guide an evolutionary process to find the optimum. Mayley [4] investi-
gated different aspects of the interaction between learning and evolution and demon-
strated that the hiding effect can take place, if the learning is sufficiently strong. The 
essence of the hiding effect is as follows: if the learning is enough strong to change 
the phenotype of the organism and organisms are selected at the evolution in accord-
ance with the phenotype, then the selection can weakly depend on the genotype. The 
hiding effect significantly reduces the role of the genotype at the evolutionary selec-
tion, and the genetic assimilation becomes less pronounced. 

In addition, the influence of the learning load (the cost of learning) on the interac-
tion between learning and evolution was investigated in [4]. The learning load means 
that the process of learning has an additional load for the organism and its fitness is 
reduced under the influence of this load. 

The current research uses works [3,4] as background. However, that works used ra-
ther complex forms of the genetic algorithm (with crossovers), so it was difficult to 



analyze quantitatively mechanisms of influence of learning on evolutionary optimiza-
tion. In contrast to [3,4], the current work uses the quasispecies model proposed by 
Manfred Eigen [5,6] and our estimations of the evolutionary rate and the efficiency of 
evolutionary algorithms [7,8]. The quasispecies model considers the evolution that is 
based on the selection and mutations of organism genotypes (without crossovers) and 
describes main properties of the evolutionary process. The use of models and methods 
of works [5-8] allows getting a better understanding of mechanisms of interaction 
between learning and evolution. 

The current work analyzes quantitatively the following main properties of interac-
tion between learning and evolution: 1) the mechanism of the genetic assimilation, 2) 
the hiding effect, 3) the role of the learning load at investigated processes of learning 
and evolution. 

Additionally, the current paper analyzes the scheme by Hinton and Nowlan [3] by 
means of the quasispecies model and characterizes mentioned main properties of in-
teraction between learning and evolution for this scheme. 

Section 2 describes the main model. Section 3 contains the results of computer 
simulation for this model. Analysis of interaction between learning and evolution 
within the framework of the scheme by Hinton and Nowlan [3] by means of the qua-
sispecies model is represented in Section 4. 

2 Description of the Model 

The evolving population of modeled organisms is considered. Similar to [3], we as-
sume that there is a strong correlation between the genotype and the phenotype of 
modeled organisms. We assume that the genotype and the phenotype of the organism 
have the same form, namely, they are chains; symbols of both chains are equal to 0 or 
1. The length of these chains is equal to N. For example, we can assume that the geno-
type encodes a modeled DNA chain, “letters” of which are equal to 0 or 1, and the 
phenotype determines the neural network of organisms, the synaptic weights of the 
neural network are equal to 0 or 1 too. The initial synaptic weights (at the birth of the 
organism) are determined by the genotype (for example, the initial synaptic weights 
can be equal to the genotype symbols). These weights are adjusted by means of learn-
ing during the organism's life. 

The evolving population consists of n organisms, genotypes of organisms are SGk, 
k = 1,...,n. The organism genotype SGk is a chain of symbols, SGki, i = 1,...,N. We as-
sume that the length of chains N and the number of organisms in the population n are 
large: N, n >> 1. The values N and n do not change in the course of evolution. Sym-
bols SGki are equal to 0 or 1. We assume that N is so large that only a small part of 
possible 2N genotypes can be presented in a particular population: 2N >> n. Typical 
values N and n in our computer simulations are as follows: N ~ n ~ 100. 

The evolutionary process is a sequence of generations. The new generation is ob-
tained from the old one by means of selection and mutations. Genotypes of organisms 
of the initial generation are random. Organisms inherit the genotypes from their par-
ents, these genotypes do not change during the organism life and are transmitted (with 
small mutations) to their descendants. Mutations are random changes of symbols SGki. 



Phenotypes of organisms SPk are chains of symbols SPki, k = 1,...,n, i = 1,...,N; SPki = 
0 or 1. The organism receives the genotype at its birth, the phenotype SPk at this time 
moment is equal to the genotype: SPk(t = 1) = SGk. The lifetime of any organism is 
equal to T. The time is discrete: t = 1,...,T. T is the duration of the generation. The 
phenotype SPk is modified during the organism life by means of learning. 

It is assumed that there is the certain optimal chain SM. Symbols SMi of this chain 
are also equal to 0 or 1; the length of the chain SM is N. For a particular computer 
simulation, the chain SM is fixed; symbols of this chain are chosen randomly. The 
optimal chain SM is searched for by means of learning and evolution. 

Learning is performed by means of the following method of trial and error. Every 
time moment t each symbol of the phenotype SPk of any organism is randomly 
changed to 0 or 1, and if this new symbol SPki coincides with the corresponding sym-
bol SMi of the optimal chain SM, then this symbol is fixed in the phenotype SPk, other-
wise, the old symbol of the phenotype SPk is restored. So, during learning, the pheno-
type SPk moves towards the optimal chain SM. 

At the end of the generation, the selection of organisms in accordance with their 
fitness takes place. The fitness of k-th organism is determined by the final phenotype 
SPk at the time moment t = T. We denote this chain SFk, i.e. we set SFk = SPk(t = Т). 
The fitness of k-th organism is determined by the Hamming distance ρ = ρ(SFk,SM) 
between the chains SFk and SM: 

fk = exp[-βρ(SFk,SM)] + ε ,                                          (1) 

where β is the positive parameter, which characterizes the intensity of selection, 0 < ε 
<< 1. The role of the value ε in (1) can be considered as the influence of random fac-
tors of the environment on the fitness of organisms. 

The selection of organisms into a new generation is made by means of the well-
known method of fitness proportionate selection (or roulette wheel selection). In this 
method, organisms are selected into a new generation probabilistically. The choice of 
an organism into the next generation takes place n times, so the number of organisms 
in the population at all generations is equal to n. At any choice, the probability of the 
selection of a particular organism into the next generation is proportional to its fitness. 

Thus, organisms are selected at the end of a generation in accordance with their fi-
nal phenotypes SFk = SPk(t = Т), i.e. in accordance with the final result of learning, 
whereas genotypes SGk (modified by small mutations) are transmitted from parents to  
descendants. 

As descendants of organisms obtain genotypes SGk that organisms received from 
their parents and not phenotypes SPk, the evolutionary process has Darwinian charac-
ter. 

Additionally, similar to [4], we take into account the learning load (the cost of 
learning), namely, we assume that the learning process has a certain burden on the 
organism and the fitness of the organism may be reduced under the influence of the 
load. For this purpose, we consider the modified fitness of organisms: 

fmk = exp(-αd) {exp[-βρ(SFk,SM)] + ε} ,                                    (2) 



where α is the positive parameter, d = ρ(SGk,SFk) is the Hamming distance between the 
initial SPk(t = 1) = SGk and the final phenotype SPk(t = Т) = SFk of the organism, i.e. the 
value that characterizes the intensity of the whole learning process of the organism 
during its life. 

It should be noted that since genotypes SGk of organisms in the initial population 
are random, the average Hamming distance between these chains and the optimal one 
SM is equal to N/2. The chains Sk should overcome this distance at learning and evolu-
tion in order to reach SM. 

3 Results of Computer Simulation 

3.1 Parameters of Simulation 

The parameters of the model at simulation are chosen in such manner that the evolu-
tionary search is effective; the experience of the work [7] for the case of the evolution 
without learning is used at this choice. The fitness of the organisms in that work was 
determined analogously to the expression (1), only the influence of random factors 
did not taken into account (formally this means that the value ε was equal to 0). 

The choice of parameters for the current simulation is as follows. We believe that 
the length of the chains is sufficiently large: N = 100. We also set β = 1, this corre-
sponds to a sufficiently high intensity of selection, so the selection time (a number of 
generations) is small, thus the time of the evolutionary search is determined mainly by 
the intensity of mutations. On the one hand, the intensity of mutations must not be too 
large, in order to remove the possibility of mutational losses of already found good 
organisms. On the other hand, the intensity of mutations must not be too small, in 
order to ensure the sufficiently intensive mutational search during the evolutionary 
optimization. Taking this into account, we believe that the probability to change any 
symbol in any chain SGk at one generation at mutations is pm = N -1 = 0.01. At this 
mutation intensity pm approximately one symbol in the genotype of any organism is 
changed at one generation, i.e. during one generation, the Hamming distance ρ be-
tween genotypes SGk of organisms and the optimal chain SM changes on average by 1 
by means of mutations. The selection leads to a decrease of the distance ρ. Since the 
intensity of the selection is large, and the Hamming distance between genotypes SGk 
in the initial population and the optimal chain SM is of the order of N, the whole pro-
cess of the evolutionary optimization takes approximately GT ~ N generations. This 
estimation of the evolutionary rate is true, if the population size is sufficiently large 
and the fluctuation effects and the neutral selection of organisms (that is the selection 
independent on the fitness of organisms) can be neglected. To satisfy this condition, it 
is enough to require that the characteristic time (a number of generations) of the neu-
tral selection, which is of the order of the population size n [9], should be greater or of 
the order of GT, so we believe that n = GT = N. 

Thus, the parameters of simulation are: N = 100, β = 1, pm = N -1, n =N. 
We also believe that T = 2, ε = 10-6. 



3.2 Comparison of Regimes of Pure Evolution and Evolution Combined with 
Learning 

Fig. 1 shows the dependence of the average Hamming distance ρ = ρ(SGk,SM) between 
genotypes SGk of organisms in the population and the optimal chain SM on the genera-
tion number G. The curve 1 characterizes the regime of evolution combined with 
learning; the curve 2 characterizes the regime of “pure evolution”, that is the evolu-
tion without learning (in this case, the learning does not occur and SPk = SGk). The 
fitness of organisms is determined by the expression (1). We can see that the pure 
evolution without learning (the curve 2) does not optimize organisms Sk at all; where-
as evolution combined with learning (the curve 1) obviously ensures the movement 
towards the optimal chain SM. 

To understand, why the pure evolution does not ensure a decrease of the value ρ, 
let us estimate the value of the fitness (1) in the initial population. The Hamming 
distance ρ = ρ(SGk,SM) for initial genotypes is of the order of N/2 = 50, therefore, 
exp(-ρ) ~ 10-22 and exp(-ρ) << ε. This means that all organisms of the population have 
approximately the same value of the fitness fk ≈ ε. Consequently, the evolutionary 
optimization of genotypes does not occur in the case of the pure evolution. Thus, the 
movement towards SM occurs only in the presence of learning; this movement leads to 
the decrease of the value ρ. A similar influence of learning on the evolutionary opti-
mization (though in another context) was described in [3]. 
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Fig. 1. The dependence of the average Hamming distance <ρ> = <ρ(SGk,SM)> between geno-
types SGk  and the optimal chain SM  on the generation number G.  The curve 1 characterizes the 
regime of evolution combined with learning; the curve 2 characterizes the regime of pure evo-
lution. Results are averaged over 1000 calculations. 

Let us consider the effect of the acceleration of the evolutionary process by learn-
ing (the curve 1 in Fig. 1). Analysis of results of simulations shows that the gradual 
decrease of the values ρ = ρ(SGk,SM) occurs as follows. First, the learning shifts the 
distribution of organisms n(ρ) on the value ρ towards smaller ρ, so the values ρ = 
ρ(SFk,SM) become small enough, such that exp[-ρ(SFk,SM)] is of the order of ε. Conse-
quently, the fitnesses of organisms in the population in accordance with (1) become 
essentially different; so organisms with small values ρ(SFk,SM) are selected into the 
population of the next generation. It is intuitively clear that genotypes of SGk of select-
ed organisms should be rather close to final phenotypes SFk (obtained as a result of the 



learning) of these organisms. Thus, the result of the selection is choosing of organ-
isms, which genotypes are also moving to the optimal chain SM. Therefore, values ρ 
in the new population decrease. 

The described mechanism of the genetic assimilation is characterized by Fig. 2, 
which shows the distributions of the number of organisms n(ρ) for given ρ in the pop-
ulation for different moments of the first generation. The curve 1 shows the distribu-
tion n(ρ) for ρ = ρ(SGk,SM) for the initial genotypes of organisms at the beginning of 
the generation. The curve 2 shows the distribution ρ = ρ(SFk,SM) for organisms after 
the learning, but before the selection. The curve 3 shows the distribution ρ = 
ρ(SFk,SM) for organisms, selected in accordance with the fitness (1). The curve 4 
shows the distribution ρ = ρ(SGk,SM) for the genotypes of selected organisms at the 
end of the generation. The genotypes of selected organisms SGk are sufficiently close 
to the final phenotypes of learned and selected organisms SFk, therefore the distribu-
tion ρ = ρ(SGk,SM) for genotypes (the curve 4) moves towards the distribution for final 
phenotypes SFk (the curve 3). Similar displacement of the distribution n(ρ) towards 
smaller values ρ takes place in the next generations. Errors of values n(ρ) at the plots 
are smaller than 0.3. 
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Fig. 2. The distributions n(ρ) in the first generation of evolution for different moments of the 
generation. The curve 1 is the distribution n(ρ) for ρ = ρ(SGk,SM) for the original genotypes 
before learning. The curve 2 is the distribution n(ρ) for ρ = ρ(SFk,SM) for organisms after the 
learning, but before the selection. The curve 3 is the distribution n(ρ) for ρ = ρ(SFk,SM) for 
selected organisms. The curve 4 is the distribution n(ρ) for ρ = ρ(SGk,SM) for the genotypes of 
selected organisms at the end of the generation. Results are averaged over 10000 calculations. 

Such displacement reveals the mechanism of the genetic assimilation: the selection 
leads to the genotypes of organisms SGk, which are closer to the phenotypes of learned 
and selected organisms SFk, than the initial genotypes of organisms at the beginning of 
the generation. Consequently, the transition from the curve 1 to the curve 4, i.e. the 
decrease of the values ρ, takes place during the generation. 



It should be underlined that the decrease of values ρ at learning should be suffi-
ciently large in order to ensure the small role of the parameter ε and the significant 
difference of the fitnesses (1) of organisms after the learning, and therefore, the effec-
tive selection of organisms with small values ρ(SFk,SM). This selection corresponds to 
the essential decrease of values ρ at the transition from the curve 2 to the curve 3 in 
Fig. 2. In order to guarantee the effective operation this mechanism, the learning 
should be enough strong. The other role of strong learning is characterized in the next 
subsection. 

It should be noted that the displacement of the distribution n(ρ) at learning in the 
first generation can be estimated as follows. Before learning, the value ρ(SPk,SM) (the 
number of symbols of phenotype SPk that do not coincide with corresponding symbols 
of the optimal chain SM) is approximately equal to N/2 = 50. After the first step of 
learning approximately a half of non-coinciding symbols are changed, so the value 
ρ(SPk,SM) becomes to be approximately equal to N/4 = 25. After the second step of 
learning (at the end of the generation) the next half of non-coinciding symbols are 
changed, so the value ρ(SPk,SM) diminishes to N/8 = 12.5. This is in agreement with 
the curve 2 in Fig. 2. 

The described results show that learning can lead to the effective genetic assimila-
tion and to the radical acceleration of the evolutionary search. 

3.3 Hiding Effect 

Thus, the strong learning can accelerate the evolutionary search. However, the strong 
learning can also prevent a finding of the optimal genotype. The curve 1 in Fig. 1 
shows that at large G the decrease of values <ρ> = <ρ(SGk,SM)> is limited: the asymp-
totic value <ρ> is approximately equal to 6.2. This is due to the fact that at large G (G 
~1000) the strong learning results in finding the optimal phenotype SPopt = SM inde-
pendently on the genotype SGk. Therefore, at final stages of the evolutionary process, 
the genotypes SGk do not move towards the optimum SM. So, the hiding effect [4] is 
observed. 

Fig. 3 characterizes the mechanism of the hiding effect. This figure represents the 
distributions n(ρ) at the end of the evolutionary process (at G = 2000) for different 
moments of the generation. The results are for the described case of simulation for the 
regime of evolution combined with learning. Fig. 3 shows that the distribution n(ρ) 
after the learning includes organisms, for which ρ(SFk,SM) = 0, i.e. the optimal pheno-
type SPopt = SM is found by means of the learning. Though the selection in accordance 
with values ρ(SFk,SM) occurs, the distance between the initial genotype distribution 
(the curve 1) and the final genotype distribution (the curve 4) is sufficiently small. 
Therefore, further reduction of ρ = ρ(SGk,SM) at the end of the evolutionary process 
does not occur. The hiding effect is confirmed by the fact that at the end of the evolu-
tion the curves (that are shown in Fig. 3) do not shift for successive generations. This 
effect is also consistent with the fact that the value <ρ> = <ρ(SGk,SM)> becomes con-
stant at large G (see the curve 1 in Fig. 1). The distributions n(ρ) for genotypes at the 
beginning of the generation and after the selection (curves 1 and 4 in Fig. 3) differ 
slightly, this is due to mutations that lead to a small increase of ρ in the beginning of a 



generation as compared with the distribution after selection. Thus, at the end of the 
evolutionary process, the strong learning results in finding of the optimal phenotype; 
hence a further optimization of genotypes does not occur. 
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Fig. 3. The distributions n(ρ) at the end of the evolutionary process (at G = 2000) for different 
moments of the generation. The curve 1 is the distribution of ρ = ρ(SGk,SM) for the initial geno-
types before learning. The curve 2 is the distribution of ρ = ρ(SFk,SM) for organisms after the 
learning, but before the selection. The curve 3 is the distribution of ρ = ρ(SFk,SM) for selected 
organisms. The curve 4 is the distribution of ρ = ρ(SGk,SM) for the genotypes of selected organ-
isms at the end of the generation. Results are averaged over 1000 calculations. 

Thus, the mechanism of the hiding effect is analyzed. This effect means that the 
strong leaning prevents a finding of the optimal genotype, as such learning increases 
the chances of finding a good phenotype independently on the genotype of the organ-
ism. In our case, the hiding effect is observed at the end of the evolutionary process. 

3.4 Influence of Learning Load on Modeled Processes 

We also analyzed the influence of the learning load on modeled processes. For this 
case, the fitness of organisms is determined by the expression (2). The simulation is 
performed for the mentioned parameters (N = n =100, β = 1, pm = 0.01, Т = 2, ε =    
10-6), the value α is equal to 1. The simulation results are represented in Figs. 4,5. Fig. 
4 shows the dependence of the average Hamming distance <ρ> = <ρ(SGk,SM)> be-
tween genotypes SGk and the optimal chain SM on the generation number G. Fig. 5 
shows the distributions n(ρ) of values ρ for different moments of the first generation 
of the evolution. 

The comparison of Figs. 1,2 and Figs. 4,5 shows that the learning load leads to the 
considerable acceleration of the evolutionary search for the optimal chain SM. This 
acceleration is due to the fact that the learning load results in the more strong selec-
tion of organisms that have small distance ρ(SGk,SFk) between the initial SPk(t = 1) = 
SGk and the final SPk(t = T) = SFk phenotypes, than for the case of the fitness (1). 
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Fig. 4. The dependence of <ρ> = <ρ(SGk,SM)> on generation number G; the influence of the 
learning load is considered; the fitness of organisms is determined by the expression (2); the 
decrease of values <ρ> is much faster than in Fig. 1 (results are averaged over 1000 calcula-
tions). 
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Fig. 5. The distributions n(ρ) for different moments of the first generation of evolution; the 
learning load is taken into account; the fitness of organisms is determined by the expression (2). 
The curve 1 is the distribution of ρ =  ρ(SGk,SM) for the original genotypes before learning. The 
curve 2 is the distribution of ρ = ρ(SFk,SM) for organisms after the learning, but before the se-
lection. The curve 3 is the distribution of ρ = ρ(SFk,SM) for selected organisms. The curve 4 is 
the distribution of ρ = ρ(SGk,SM) for the genotypes of selected organisms at the end of the gen-
eration. The displacement of the distribution 4 to smaller values ρ is significantly larger than in 
Fig. 2. Results are averaged over 10000 calculations. 

Fig. 6 represents the distributions n(ρ) at the end of the evolutionary process (at G 
= 200) for different moments of the generation. This figure shows that the optimal 
genotype SGopt = SM in the considered case is found. The hiding effect is absent in this 
case. 

It should be underlined that the genetic assimilation for cases of the fitness, which 
is determined by the expression (1) and the expression (2), has the same nature. In 
both cases, genotypes of selected organisms SGk approach to final phenotypes SFk of 
learned and selected organisms. That is in both Fig. 2 and Fig. 5 the curve 4 moves 
towards the curve 3. A significant difference consists only in the fact that the learning 
load makes this movement more evident and more effective. Thus, the learning load 
leads to more effective optimization of genotypes of SGk; and consequently, the evolu-



tion process is significantly accelerated. The learning load makes the genetic assimila-
tion more profound. 
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Fig. 6. The distributions n(ρ) at the end of evolution (at G = 200) for different moments of the 
generation; the learning load is taken into account; the fitness of organisms is determined by the 
expression (2). The curve 1 is the distribution of ρ = ρ(SGk,SM) for the initial genotypes before 
learning. The curve 2 is the distribution of ρ = ρ(SFk,SM) for organisms after the learning, but 
before the selection. The curve 3 is the distribution of ρ = ρ(SFk,SM) for selected organisms. The 
curve 4 is the distribution of ρ = ρ(SGk,SM) for the genotypes of selected organisms at the end 
of the generation. Results are averaged over 1000 calculations. 

Thus, the computer simulation shows that the genetic assimilation, the hiding ef-
fect, and the significant acceleration of the genetic assimilation and the evolutionary 
process under the influence of the learning load are observed in the current model. 

4 Comparison with the Approach by Hinton and Nowlan 

This section uses the approach by Hinton and Nowlan [3] as well as the quasispecies 
model [5,6]. We consider the additional model that is very similar to the main model 
described above. The additional model is based on the approach of the work [3]. Al-
most all assumptions of the additional model are the same as in the main model. In the 
additional model, we suppose that organisms of the evolving population have geno-
types SGk and phenotypes SPk, k = 1,...,n. SGk and SPk are chains of symbols, SGki, SPki, i 
= 1,...,N, N, n >> 1. Symbols SGki, SPki are equal to 0 or 1. SPk(t = 1) = SGk, t = 1,...,T. T 
is the duration of the generation. There is the certain optimal chain SM (components of 
which SMi are equal to 0 or 1, i = 1,...,N), which is searched for in the process of evo-
lution and learning. Learning is performed by means of the method of trial and error 
(as described above). At the end of the generation, the selection of organisms in ac-
cordance with their fitness takes place; the method of fitness proportionate selection is 
used. 

Only the fitness of organisms in the additional model is defined in another way, as 
follows. 



If learning takes place, the fitness of k-th organism is determined by the final phe-
notype SPk at t = T: 

fk = exp[-βρ(SFk,SM)] ,                                             (3) 

where SFk = SPk(t = Т), ρ = ρ(SFk,SM) is the Hamming distance between SFk and SM. 
If there is no learning, then the fitness is:  

fk  = 1 at SGk = SM ;    fk = 0 at SGk ≠ SM .                                  (4) 

Additionally, the influence of the leaning load is taken into account. In this case, 
the fitness is modified: 

fmk = exp(-αd) exp[-βρ(SFk,SM)] ,                                       (5) 

where d = ρ(SGk,SFk). 
The additional model has been analyzed by means of computer simulation. All 

simulations have been made for the case, when the learning takes place; that is the 
fitness is determined by expressions (3), (5). The results for the additional model are 
almost the same as the described results for the main model. The genetic assimilation, 
the hiding effect, and the influence of the leaning load are observed in the case of the 
additional model. 

The coincidence of the essential results for the main and additional models shows 
that the role of the parameter ε (see expressions (1) and (2)) in the main model is ra-
ther small. This parameter is essentially significant only for clear comparison of re-
gimes of pure evolution and evolution combined with learning (see Fig. 1).    

Thus, the comparison demonstrates that in the framework of the approach of the 
work [3], we can design the model, which reveals actually the same properties of 
interaction between learning and evolution as the main model.  

The analysis of both models shows that a) the genetic assimilation, b) the hiding 
effect, and c) the significant acceleration of the genetic assimilation and the evolu-
tionary process under the influence of the leaning load are observed in these models 
under the following assumptions: 

1) Each organism of the evolving population has a genotype and a phenotype. 
2) The genotype and the phenotype are chains of symbols; the both chains have the 

same form. 
3) Genotypes of organisms are transmitted from parents to descendants with small 

mutations. The genotype of the organism is not changed during its life. 
4) The initial phenotype of the organism at its birth is equal to the organism geno-

type. 
5) There is a certain optimal chain, which is searched for by means of learning and 

evolution. The optimal chain has the same form as the genotype and the phenotype. 
6) The phenotype is essentially adjusted by means of learning during the organism 

lifetime. During learning, the phenotype moves towards the optimal chain. 
7) The selection of organisms into a new generation occurs in accordance with fi-

nal phenotypes of organisms. 



5 Conclusion 

Thus, the model of interaction between learning and evolution has been constructed 
and investigated. 

The mechanism of the genetic assimilation is studied. It is shown that the genetic 
assimilation takes place as follows. The phenotypes of modeled organisms move to-
wards the optimum at learning; then the selection in accordance with final phenotypes 
takes place; the genotypes of selected organisms also move towards the optimum. 

The mechanism of the hiding effect is analyzed. This effect means that strong 
learning inhibits the evolutionary search for the optimal genotype, if this learning 
increases the chances of finding a good phenotype regardless of the genotype. 

The influence of the learning load on the interaction between learning and evolu-
tion is studied. It is shown that the learning load leads to the effective genetic assimi-
lation and to a considerable acceleration of evolution. 

It should be underlined that our analysis essentially uses the quasispecies model 
[5,6]. Basing on this model, it is sufficient to consider only single significant variable, 
the distance to the optimum ρ. This ensures the clear understanding of mechanisms of 
interaction between learning and evolution. 
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