МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ АГЕНТОВ ИНВЕСТОРОВ И ПРОИЗВОДИТЕЛЕЙ В СРЕДЕ ПРОЗРАЧНОЙ РЫНОЧНОЙ ЭКОНОМИКИ

Сохова 3. Б.

Научно-исследовательский институт системных исследований РАН

В статье предлагается многоагентная модель прозрачной рыночной экономической системы. Работа является развитием работы [1], в которой была предложена модель взаимодействия агентов инвесторов и производителей в среде прозрачной экономической системы. В данной работе продемонстрирована работоспособность модели и получены первые результаты моделирования. Предлагаемый метод основан на подходе работ [2, 3], в которых использовались легкие агенты-посланники (аналоги искусственных муравьев, «artificial ants») для оптимизации работы производственного цеха и маршрутизации движения автомобилей в городе.

В настоящей работе легкие агенты используются для оптимизации функционирования сообщества инвесторов и производителей. В отличие от других работ по многоагентым экономическим моделям (см., например, [4]) рассматривается упрощенное экономическое сообщество, состоящее только из инвесторов и производителей, что позволяет построить и проанализировать модель достаточно четко.

Обшие положения

Полагаем, что имеется сообщество, состоящее из N инвесторов и M производителей, каждый из которых имеет определенный капитал K_{inv} и K_{pro} . Инвесторы и производители функционируют в среде прозрачной экономики, т.е. предоставляют всему сообществу информацию о своем текущем капитале и прибыли. Время t дискретно. Имеются периоды функционирования сообщества. Например, каждый период может быть равен одному году. Далее T – номер периода.

В начале каждого периода T отдельный инвестор делает вклад в m производителей. В конце периода производитель возвращает каждому инвестору капитал, вложенный инвестором, а также распределяет полученную им прибыль между инвесторами пропорционально их вкладам, при этом определенная доля прибыли остается у производителя.

В конце периода T-1 каждый инвестор принимает решение: какой капитал вложить в того или иного производителя в следующий период T. Для того чтобы принять решение организуется итеративный процесс, который будет подробно описан ниже.

Принципы функционирования сообщества производителей и инвесторов

Считаем, что перед началом периода T i-й производитель имеет собственный исходный капитал C_{i0} . К капиталу каждого производителя добавляются вклады от инвесторов. Будем полагать, что производитель вкладывает в производство весь имеющийся у него к началу периода капитал C_i :

$$C_i = C_{i0} + \sum_{j=1}^{N} C_{ij}$$
, (1)

где C_{ij} — капитал, вложенный j-м инвестором в i-го производителя в начале периода. Считаем, что зависимость прибыли производителя от его текущего капитала нелинейная $Pr_i(C_i)$: прибыль мала при малом капитале C_i и достигает насыщения или очень медленно возрастает при большом C_i : $Pr_i(C_i) = k_i F(C_i)$, где функция F одинакова для всех производителей, а коэффициент k_i характеризует эффективность производства i-го производителя. Величины k_i в конце каждого периода случайно варьируются. При компьютерном моделировании считалось, что функция F(x) имеет вид $F(x) = \frac{x^2}{x^2 + a^2}$, где a — положительный параметр.

В конце периода T производитель возвращает инвесторам вложенный ими капитал. Кроме того, производитель выплачивает инвесторам часть полученной им прибыли. Причем j-му инвестору отдается часть прибыли, пропорциональная сделанному им вкладу в данного производителя:

$$Pr_{ij} = k_{gbinn} Pr_i(C_i) \frac{C_{ij}}{N}, \qquad (2)$$

$$\sum_{l=1}^{N} C_{il}$$

где C_i — текущий капитал (в начале периода) i-го производителя, $k_{6ыпл}$ — параметр, характеризующий долю выплат прибыли инвесторам, $0 < k_{6ыпл} < 1$. Сам производитель получит остальную часть своей прибыли Pr_i , равную:

$$Pr_i = (1 - k_{gbin\pi}) Pr_i(C_i).$$
(3)

Схема итеративного процесса принятия решения инвесторами

Итеративный процесс, в течение которого определяются вклады инвесторов в производителей, состоит в следующем. *На первой итерации* инвесторы рассылают

агентов-разведчиков по всем производителям и определяют, какой капитал имеется у каждого производителя в данный момент времени. Причем на первой итерации не учитываются вклады других инвесторов в производителей. Далее инвесторы оценивают величины A_{ij} , характеризующие прибыль, ожидаемую от i-го производителя в течение нового периода T. Эти величины A_{ij} равны:

$$A_{ij} = k_{dist} Pr_{ij} = k_{dist} k_{sun N} k_{i} F(C'_{i0}) \frac{C_{ij}}{N}$$

$$\sum_{l=1}^{N} C_{il}$$
(4)

где C_{il} — капитал, вложенный l-м инвестором в i-го производителя, C_{i0}' — предполагаемый исходный капитал i-го производителя в начале следующего периода (пока без учета вкладов инвесторов), $k_{dist} = k_+$ либо k_- , $k_+ > k_-$. Положительные параметры k_+ , k_- определяют степень доверия инвестора к производителю, т.е. полагается, что степень доверия инвестора к проверенному и непроверенному производителю равна k_+ и k_- , соответственно. Эти параметры учитывают то, что инвестор предпочитает проверенных им производителей.

Затем инвестор ранжирует всех производителей в соответствии с величинами A_{ij} и выбирает m наиболее выгодных производителей, т.е. тех производителей, которым соответствуют большие величины A_{ij} . Далее j-й инвестор формирует намерение распределить весь свой капитал K_{inv} j по всем выбранным производителям, пропорционально полученным оценкам A_{ij} (для невыбранных производителей формально полагалось $A_{ij} = 0$). А именно, намечается, что вклад j-го инвестора в i-го производителя C_{ij} будет равен:

$$C_{ij} = K_{inv_j} \frac{A_{ij}}{\frac{M}{\sum_{i=1}^{M} A_{ij}}}.$$
 (5)

На второй итерации каждый инвестор с помощью агентов намерений оповещает тех производителей, которых он выбрал для инвестиций, о величине капитала, который он намеревается вложить в каждого из производителей.

На основе этих данных производители оценивают свой новый исходный капитал C_{i0}' , который они ожидают после получения капитала от всех инвесторов, т.е. у производителя формируется оценка суммы $\sum\limits_{l=1}^{N} C_{il}$ и новая оценка своего капитала в соответствии с выражением (1).

Затем инвесторы снова высылают агентов-разведчиков ко всем производителям и оценивают новый капитал производителей C'_{i0} с учетом намерений других инвесторов. Делаются оценки прибыли, согласно выражению (4), в котором уже учитывается сумма вкладов всех инвесторов $\sum\limits_{l=1}^{N} C_{il}$. Далее производители ранжируются, и капитал инвестора распределяется пропорционально новым полученным оценкам A_{ij} . Инвесторы снова рассылают агентов намерений, для того чтобы сообщить производителям намеченные величины вкладов.

Делается достаточно большое число таких итераций, после чего итерации заканчиваются, и инвестор принимает окончательное решение, какие вложения сделать на следующий период T. Окончательные вклады равны величинам C_{ij} , полученным инвесторами на последней итерации.

В конце каждого периода T капиталы производителей пересчитываются с учетом амортизации (например, это может быть, амортизация оборудования производителя) $K_{pro}(T+1) = k_{amr}K_{pro}(T)$, где k_{amr} – коэффициент амортизации ($0 < k_{amr} \le 1$). Аналогично учитываются расходы инвесторов (для удобства соответствующие величины будем называть коэффициентами инфляции) и пересчитывается капитал инвесторов $K_{inv}(T+1) = k_{inf}K_{inv}(T)$, где k_{inf} – коэффициент инфляции ($0 < k_{inf} \le 1$).

Если капитал инвестора или производителя стал меньше определенного малого порога Th_{min_inv} или Th_{min_pro} , то инвестор или производитель прекращает свою деятельность. Если же капитал инвестора или производителя стал больше высокого порога Th_{max_inv} или Th_{max_pro} , то такой инвестор или производитель порождает «потомка», при этом «родитель» отдает потомку половину своего капитала.

Результаты моделирования

Параметры моделирования. Описанная выше модель была реализована в виде компьютерной программы на языке Java. Использовались следующие параметры расчетов: $N_T = 100$; количество итераций $k_{iter} = 20$; пороги $Th_{max_pro} = 1$, $Th_{max_inv} = 1$, $Th_{min_pro} = 0.01$, $Th_{min_inv} = 0.01$; максимальное количество производителей и инвесторов $N_{pro_max} = 100$, $N_{inv_max} = 100$; начальное количество производителей и инвесторов $N_{pro_initial} = 50$, $N_{inv_initial} = 50$; m = 100; $k_{6blnn} = 0.3$; характерная величина случайной вариации коэффициентов k_i , определяющих эффективность i-го производителя $\Delta k = 0.5$; параметр функции F(x), определяющей величину прибыли a = 1 или a = 10; $k_+ = 1$, $k_- = 0.5$. Начальные капиталы инвесторов и производителей, а также величины k_i ,

характеризующие эффективность производителей в начале расчета были случайными, равномерно распределенными в интервале [0,1]. Для получения надежных данных всюду проводилось усреднение по 100 различным расчетам.

Проверка сходимости итеративного процесса. Была проверена зависимость конечного суммарного капитала производителей для типичного расчета в зависимости от числа итераций в каждом периоде. Результаты для основного значения a=1 (параметра функции F(x)) представлены на рис. 1. Видно, что итеративный процесс сходится в течение 10-20 итераций.

Рис. 1. Сходимость итеративного процесса ($k_{amr} = 1$, $k_{inf} = 1$)

Основной расчет. Приведем результаты для расчета, в котором нет амортизации и инфляции: $k_{amr} = 1$, $k_{inf} = 1$ (рис. 2). На рис. 2-4 капитал производителей показан сплошной линией, капитал инвесторов – штриховой линией.

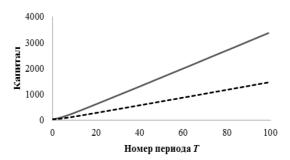


Рис. 2. Зависимость суммарного капитала производителей и инвесторов от времени (номера периода). Идеальная экономическая среда: $k_{amr} = 1$, $k_{inf} = 1$

Рис. 2 показывает, что при $k_{amr} = 1$, $k_{inf} = 1$ суммарный капитал производителей и инвесторов со временем растет.

Влияние амортизации капитала производителей и инфляции на моделируемые процессы. При умеренной амортизации и инфляции суммарный капитал производителей и инвесторов со временем несколько повышается и при больших T почти не меняется (рис. 3a). При высокой инфляции или амортизации капитал производителей и инвесторов уменьшается, и они погибают (рис. 3б).

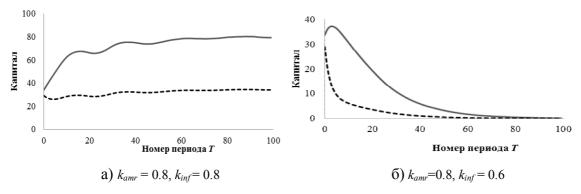


Рис. 3. Зависимость суммарного капитала производителей и инвесторов от времени. Различные уровни инфляции и амортизации.

Заключение

Таким образом, построена многоагентная модель прозрачной рыночной экономики. Продемонстрирована работоспособность модели и получены первые результаты компьютерных экспериментов. Проанализировано влияние параметров модели на исследуемые процессы.

Автор благодарит В. Г. Редько за плодотворные дискуссии и помощь в разработке модели.

Литература

- 1. Сохова З.Б., Редько В.Г. Исследование поведения агентов-инвесторов и агентов-производителей в многоагентной модели конкурентной экономики // Искусственный интеллект: философия, методология, инновации Сборник научных трудов. Ч.1. М.: МГТУ МИРЭА, 2012, С. 145-149.
- 2. Holvoet T., Valckenaers P. Exploiting the environment for coordinating agent intentions // Environments for Multi-Agent Systems III, Lecture Notes in Artificial Intelligence, Springer. Berlin et al. Vol. 4389, 2007. P. 51-66.
- 3. Claes R., Holvoet T., Weyns D. A decentralized approach for anticipatory vehicle routing using delegate multiagent systems // IEEE Transactions on Intelligent Transportation Systems. 2011. Vol. 12. No. 2. P. 364-373.
- 4. Бахтизин А.Р. Гибрид агент-ориентированной модели с пятью группами домохозяйств и СGE модели экономики России // Искусственные общества. М: ЦЭМИ РАН, 2007. Т. 2. № 2. С. 30-75.