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Abstract — We study an evolution model of adaptive self- Baldwin effect by means of computer simulation. ¥he
learning agents. The control system of agents isabed on a showed that this effect could play important rohe the
neural ne.tVVOI'k adapti_ve critic design. Each qgent_si a broker process of evolution of the model Organisms_
tha.t predicts _stock price chang_es and uses its prmi_ons for In this paper, we design and investigate an emiuti
action selection. The agent tries to get rich by ing and o1 of agaptive self-learning agents: the congyaitem
selling stocks. We demonstrate that the Baldwin efte takes ) o L
place in our model, viz., originally acquired adapitve policy of of agents is based ona neural network adaptitie design
an agent-broker becomes inherited in the course othe (ACD). The ACD includes two neural networks (NNs):
evolution. In addition, we compare agent behaviorattactics ~Model and critic. The model predicts the state lvé t
with searching behavior of simple animals. environment for the next time step, and the cigtiased to

select actions on the basis of this prediction.sEHENs can
be optimized by both learning and evolution.

In comparison with other investigations of the Rl

Development of multi-agent systems is a promisingffect, our study pays the main attention to sediHhing
research direction of computational intelligenceatéiring autonomous agents. Though our work is similar &b ¢ D.
various phenomena in evolving populations of adapti Ackley and M. Littman [3], the control system ofragents
agents. One of the most interesting phenomenactirabe is more theoretically justified. First, it is based the ACD
observed in such populations is the Baldwin effde8]. architecture, with the well-investigated tempordfedence
According to the Baldwin effect, learned featuret oalgorithm [9] as its learning method. Second, ogerd
organisms can be inherited indirectly in subsequenbntrol system includes the model NN, thereby ahmthe
generations of organisms. The Baldwin effect warkevo agent to predict future environment states and itse
steps. In the first step, evolving organisms obtairability predictions for action selection. Explicit predosts of
to learn a certain advantageous trait through ap@t® future states can provide new capabilities in ligeht
mutations. The fitness of such organisms is in@@aand control systems of autonomous agents.
they are spread throughout the population. However, In our setup, a population of agents evolves. Athhth
learning is typically costly because it requireergy and of each agent, initial synaptic weights of its Nfésm its
time. Here comes the second step called the genegenome. During the agent life, the weights of itdsNare
assimilation. The advantageous trait can be "reited® by adapted by means of reinforcement learning. Agémas
the genetic evolution and becomes directly genigtica learn well receive large rewards and procreateld@m

|. INTRODUCTION

encoded. The second step takes a number of gererafi
stable environment and a high correlation betwesTtotype
and phenotype facilitate this step. Thus, the athgaous
trait originally acquired can become inherited thiouthe
Darwinian evolution.

G. Hinton and S. Nowlan [2], D. Ackley and M. Litam
[3], G. Mayley [4] and other researchers [5-8] gmat the

inherit the genomes of their parents (initial syiapeights
of the NNs). The genomes of evolving agents argestdul
to small mutations. If initial weights of some atgedrift via
mutations toward successful weights obtained incthase
of learning, then such agents will learn faster,dmehce,
obtain more reward. During several generationsstaging

weights can reach values which, from the behavioral



standpoint, were obtained previously by the suduakss © i

learning process. Thus, acquired synaptic weightd () =D y'r(t+j), t=1,2, .. @)

effectively become inherited. This scheme is imtrast i=0

with the direct inheritance of learned weights afgnts by

their children. wherer(t) is an instantaneous reward obtained by the agent,
This paper consists of six sections. In Sectiowd and y is the discount factor (0 ¢ < 1). Assuming

describe the agent task. Agent control systenessribed [AX(t+1)] <<X(t) for all t, we suppose that the ACD state

in Section 111, followed by evolution specifics 8ection Iv. S(t) at moment is characterized by two valuesx(t) and

We describe our experiments and results in Section U(t): S(t) = {X(t), u(t)}.

followed by conclusion in Section VI. ) _
The role of the model is to predict changes of stoek

1. AGENTTASK time series. The model outpuiX™(t+1) is based orN
previous values ofAX, AX(t-N+1), ... , AX(t), which are
Inspired by [10], we consider an adaptive agenkérolt used as the model inputs. The model is implemeased
predicts change of a stock price and tries to mmmeits Multilayer perceptron (MLP) with one hidden laydrtanh
wealth by buying and selling stocks. The agent itms hodes and linear output, and it is trained by tiseial
resource distributed into cash and stocks. The suthese Packpropagation method. _
is the net capital of the age@(t). The state of the agent is The cr!t|c is mtendgd to estimate the state véilunetion
characterized by the variablgt), which is the fraction of V(S) (estimate ofU in (3)) for the current stat&(t) =
stocks in the net capital of the agent. The envirent is {AX(t), u(t)}, the next stat&(t+1) = {AX(t+1), u(t+1)}, and
determined by the time serigt), t = 1,2,..., whereX(t) is  its predictionsS”(t+1) = {AX” (t+1), u} for two possible
the stock price at the momentThe goa' of the agent is to actions,u = Ooru=1. The CI’ItI.C |-S als(-) a MLP of the same
increase its capitaC(t) by changing the value(t). The Structure as the model, but it is trained by thepteral

capital dynamics is difference method [9].
C(t+1) = C(t) {1 + u(t+1) AX(t+1) / X()} % {AX(®), u(t)} v(H)

[1-J Ju(t+1) —u()]], 1) ———»  Critc [
whereAX(t+1) = X(t+1) - X(t) is the current change of the Ax(t-N+1),... AX(8)} AXP(t+1)

stock price,J is a parameter that takes into account
expenses of the agent when buying/selling stockse T !
factor in the braces corresponds to the changkeo€apital !

as the result of stock price rise/drop. The fadtothe — r-----------"c-cmmom—- -
square brackets is the expenses of the agent whe:n{Axp’(t+1),u} VP (t+1)
buying/selling stocks. Following [11], we use the .
logarithmic scale for the agent resource, Rft) = log C(t). Critic V(t+1
The current agent rewardt) is defined by the expression: T {AX(t+1), u(t+1)} (t+1)
r(t) = R(t+1) —R(1):

> Model >

r(t) =log {1 +u(t+1) AX(t+1) / X(t)} + Fig. 1. Our ACD. The model predicts changes oftiime series. The critic
(the same neural network is shown in two conseeutioments) forms the
log [1 -J |u(t+1) —u(t)[]. (2)  state value function for the current st&® = {AX(t), u(t)}, the next state

S(t+1) = {AX_(t+1), u_(t+1)}, and its prediction&” (t+1) = {AX™ (t+1), u}
For simplicity and unlike [10], we assume that thdP O possibleactions,=0oru=1.
variableu(t) takes only two valuesi(t) = 0 (all in cash) or

u(t) = 1 (all in stock). At any momentt, the following operations are

performed:
lll. AGENTCONTROL SYSTEM 1) The model predicts the next change of the tieres
The agent control system is a simplified ACD. Ou?x(tﬂ)'
adaptive critic scheme consists of two neural nétaio
model and critic (see Fig.1). The goal of the aideptritic
is to maximize stochastically utility functids(t) [9]:

2) The critic estimates the state value function tloe
current state/(t) = V(S(t)) and the predicted states for both
possible actiond®(t+1) = V(S (t+1)), whereS” (t+1) =
{AXP" (t+1),u}, andu=0 oru= 1.



3) Thee-greedy rule is applied [9]. With the probabilitye 1 V. RESULTS OFSIMULATIONS

the action corresponding to the maximum vailig(t+1) is

selected, and an arbitrary action is selected with In our computer simulations we use two examples of
probabilitye (0 <& << 1). model time series:

4) The selected action is carried out. The tramsito the 1) sinusoid:

next time moment+1 occurs. The current rewardt) is

calculated in accordance with (2) and receivedngyACD. X(t) = 0.5(1 + sin(2t/20)) +1, (5)
The value AX(t+1) is observed and compared with its

predictionAX” (t+1). The model NN weights are adjusted?) stochastic time series from [10, Example 2]:

to minimize the prediction error using the error

backpropagation and the gradient descent withO as the At) = aft-1) + K1),

model learning rate.
p(t) = p(t-1) + At-1) +kA(),

5) The critic computesv(t+1). The temporal-difference X(t) = expp(t)/1200), (6)
error is calculated:

S(t) =r(t) +yV (t+1) -V (1) . (4) WwhereA(t) and 1) are two random normal processes with
zero mean and unit variance (N(0,1)), and where0.9,

6) The weights of the critic neural network areustipd to k=0.3.

minimize the temporal-difference error (4) usings it

backpropagation and the gradient descent withO as the =~ Some parameters are set to the same values for all

critic learning rate. simulations. Specifically, we set population siges 10,
discount factory= 0.9, number of inputs of the model NN
IV. EVOLUTION OF ADAPTIVE AGENTS N =10, number of hidden neurons of the model ared th

critic Ny = Npc = 10, learning rate of the model and the
Our evolving population consists ofagents. Each agent critic  au = ac = 0.01, expenses of the agent when
has a resourcB(t) that changes in accordance with valuebuying/selling stocksJ=0, and the initial resource of
of agent rewardsR(t+1) = R(t) + r(t), wherer(t) is newborn agenR(0)=0. Other parameters (generation
calculated in (2). At the beginning of any genieratall duration T, parameters of the s-greedy rule, mutation
agents have the same initial resour(@). intensityPn,) were set to different values, depending on the
The initial synaptic weights of both NNs (model andsimulation, as specified below.
critic) form the agent genom@. The genomés does not For our experiments with the sinusoid (5), we coraga
change during agent life, and it is fixed when #@uent is the maximum resource in the populatiRgy (ny) at the end
born. However, synaptic weights of the NWsare changed of each generation in two cases:
during agent life via learning described in Secfibn 1) evolution of self-learning agents, as detailed éct®n
Evolution passes through a number of generations, IV (the blue curve in Fig. 2), and
ng=1,2,...,Ng. The duration of each generatiofis T time  2) pure evolution, i.e., without agent learning (tred r
steps. At the end of each generation, the agernhdahe curve in Fig. 2).
maximum resourc&®mx (Ng) is determined. This best agent The results are averaged over 1000 simulations With
gives birth ton children that constitute a newmgt1)-th 200,e = 0.05,Py, = 0.01. Fig. 2 does indicate a significant
generation. The children genon@dgliffer from their parent advantage to combining evolution with learning.
genome by small mutations. Mutations affect aliredats The rest of the paper discusses our results for the
of G, as a normally distributed random value with zerevolution of self-learning agents. Detailed dynasnid¢ the
mean and standard deviatiéh,; (mutation intensity) is best agent resourcBm.(t) for the sinusoidalX(t) in a
added to each synaptic weight. particular simulation is illustrated by Fig. 3 fibre first five
At the beginning of every newnd+1)-th generation, we generations (note th&..(ng)=R(20() of the best agent,
set for each agenG(ng+l) = Gpes(ng) + mutations, wherek=1,2,3,4,5). The parameters of the simulation lage t
W(ngt1l) = G(ng+1), whereGpes(ng) is selected from the same as for Fig. 2. Fig. 3 demonstrates the seiqlient
best agent of the previous-th generation. Thus, the improvement of agent policies. The well-adaptednage
genomeG changes only via evolution, whereas the synaptliehaves in the following way. It buys stocks atri@ments
weightsW are adjusted only via learning. of predicting stock price rises and sells stocksemvh
On average, we expect that the best agents wilhkteg predicting stock price falls. This correspondste bptimal
accumulater earlier with every new generation as the resufiolicy. The agent capital periodically increasehéw the
of the Baldwin effect. stock price rises), and it remains approximatelystant
(when the stock price falls). Fig. 3 shows that,the f'



generation, the best agent optimizes its policyidayning

agent resourcB(t) for the first twelve generations. Fig. 5

and finds a rough solution only by the end of thishows dynamics of the best agent action selectigin

generation. Subsequently, the best agents findisfaszory
(close to optimal) policy faster and faster. By tB8
generation, a newborn agent “knows” a satisfacpmljcy

the 2% generation (3000 &< 3500) (Fig. 5a), in the 1
generation (28300 &< 28400) (Fig. 5b) and in the %48
generation (118500 &< 119000) (Fig. 5¢) for the same

as encoded in its genon@®, and the learning does notsimulation. The time serieqt) is also shown in all figures.

improve the policy significantly. Thus, Fig. 3 denstrates
that, for the simple periodic dependensg), the initially
learned policy becomes inherited.
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Fig. 2. Two plots of the maximum resource in theyation Ry(ng)
attained by the end of each generation vs. thergéoe numbemy . The

blue curve corresponds to the case of the evolafaself-learning agents

(evolution is combined with learning, as detailadSection V), whereas
the red curve corresponds to the case of pure wol(without learning).

Each point of the plots represents an average 18@® simulations, each

starting with a different random sedds 200,¢ = 0.05,Pm, = 0.01
5
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Fig. 3. The resource plot of the best agent inpthulation for a particular
simulation; the case of sinusoidal time series {3t five generations.
The moments when generations end are shown byaklities;T = 200,¢
= 0.05,Pmy; = 0.01. Periodical increases (when the stock pisms) and
approximately constant values (when the stock pffas) of Ryax
correspond to optimal policy of the agent, e.gchspolicy is observed in
5" generation. See the text for details.

Figs. 4 and 5 illustrate our simulation results fbe
stochastic time series (6). Fig. 4 shows dynami¢hebest

The parameters of this simulation are= 2500, = 0.03,

Pt = 0.03. Fig. 4 demonstrates that the agent resoatrc
the end of each generation features an upward.tf2umihg

the early generations (generations 3 to 7), angifsignt
increase of the agent resource begins only ingbersl half

of the agent life. This means that the agent |learpirocess
takes a while before it finds an adequate policyriiy the
later generations (generations 9 to 12), the isgrez the
resource begins from the start of each generation,
demonstrating that the advantageous policy becomes
inherited.
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Fig. 4a. The resource plot of the best agent inpiygulation (blue); the
stochastic time series; f'&enerationsT = 2500,& = 0.03,Pp: = 0.03.
The time serieX(t) is red.
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Fig. 4b. The resource plot of the best agent inpibjulation (blue); the
stochastic time series; 718enerations. The time serg) is red.



‘ 1.81
‘\
14 \ {188 1
‘u““w‘ 1.8
N “‘
—~ 0.6 M 1.84 . 061 e
= = = =
> \ I\ < S X
\ A\ \+ 1.78
\ “\J ! .
0.2 A “ 7 +1.8 0.2 A
| 1.77
-0.2 ‘ ‘ ‘ ‘ 1.76 0.2 | 1.76
3000 3100 3200 3300 3400 3500 28300 28350 28400
t t

Fig. 5a. The time dependence of actions selectetthdypest agent in the Fig. 5b. The time dependence of actions selectethdyest agent in the
population (blue); actions are characterized byemu(t): u = 0 (all in  population (blue); actions are characterized byesu(t): u = 0 (all in
cash) andu = 1 (all in stock); this is the"2generation fragment. The time cash) andu = 1 (all in stock); this is the ¥2yeneration fragment. The time
seriesX(t) is red. seriesX(t) is red.
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Fig. 5¢c. The time dependence of actions selectatidopest agent in the population (blue); actioescharacterized by valueg): u = 0 (all in cash) and
u =1 (all in stock); this is the £&yeneration fragment. The time seiés is red.

Figs. 4 and 5 demonstrate that, at the beginning daftocks. In contrast, anticipating moderate stoclcepr
evolution, the agents do not find an effective ppliFor  decrease, the agent demonstrates searching behatiims
example, during the"2generation the best agent prefers torandomly to transform its capital into stocks fcsteort time
keep all capital in cash, i.a1,= 0 almost all théime in this (e.g., att = 118550, 118850, 118980). Such random
case (Fig. 5a). However, by the™Beneration the best searching tactic can be useful, if the agent isconffident
agent finds a reasonable policy (Fig. 5b). It bsgié about future changes of environment. The tactio isome
stocks when correctly predicting imminent stockceri extent asymmetricalj.e., the agent prefers to keep its
increases/decreases. It should be noted that #re pglicy  capital in stocks (see also Fig. 5b), as if hopnget future
is not always optimal. For example, tat 28315, 28332, positive rewards (profits) during possible stockicer
28380, the trend changes from the price rise toptfie  increases. Thus, the agent switches its behavitwelae
fall. However, the agent does not sell stocks imliately two tactics (buy stocks or sell stocks). Such psecef
at these moments. It appears to be waiting fordtan  switching appears to have both inertial and randearch
trend to become more salient, namely, to reach eomponents.
sufficiently large negative values aK(t). It should be noted that the behavior with switching

In the 48" generation (Fig. 5¢) the agent demonstrates abetween two tactics is analogous to searching csatf
interesting rational behavior. Anticipating moderatock simple animals. For example, some species of caitidis
price increase, the agent usually transforms ifstalainto  larvae use similar tactics for case building [123]. IThe



larvae inhabit creek bottoms and build their cdsa®s hard

particles of different size. They can use smallaoge sand of evolution of autonomous adaptive agents.

particles [12]. Large particles are distributeddamly, but
typically in groups of several particles.

effectively than with small particles, so its prefece is
evident. The larva uses two tactics: 1) testingiges in its
vicinity and building the case from selected péesc 2)
searching for a new place with a collection of appiate
particles. Investigations of larva behavior revieartia in
switching from the first tactic to the second tagti2, 13].
If the larva finds a large particle, it continuessting
particles until it finds several small particlesdeonly after
repeated failures to find new large particles dibeslarva
switch to the second tactic. During searching foneav

Using gar
particles, the larva can build cases more quickhd a

Our work describes a possible approach to invatstig
Défifer
learning algorithms for agent control systems may b
employed, without changing the fundamental outcome.
Our future research can include:
- a more detailed analysis of interaction between
learning and evolution;
- an investigation on the role of prediction in
shaping adaptive behavior of autonomous agents;
- a more thorough comparison of agent behavior
with adaptive behavior of simple animals.
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