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Abstract – We study an evolution model of adaptive self-

learning agents.  The control system of agents is based on a 
neural network adaptive critic design. Each agent is a broker 
that predicts stock price changes and uses its predictions for 
action selection. The agent tries to get rich by buying and 
selling stocks. We demonstrate that the Baldwin effect takes 
place in our model, viz., originally acquired adaptive policy of 
an agent-broker becomes inherited in the course of the 
evolution. In addition, we compare agent behavioral tactics 
with searching behavior of simple animals. 

 
I. INTRODUCTION 

 
Development of multi-agent systems is a promising 

research direction of computational intelligence, featuring 
various phenomena in evolving populations of adaptive 
agents. One of the most interesting phenomena that can be 
observed in such populations is the Baldwin effect [1-8]. 
According to the Baldwin effect, learned features of 
organisms can be inherited indirectly in subsequent 
generations of organisms. The Baldwin effect works in two 
steps. In the first step, evolving organisms obtain an ability 
to learn a certain advantageous trait through appropriate 
mutations. The fitness of such organisms is increased, and 
they are spread throughout the population. However, 
learning is typically costly because it requires energy and 
time. Here comes the second step called the genetic 
assimilation. The advantageous trait can be "reinvented" by 
the genetic evolution and becomes directly genetically 
encoded. The second step takes a number of generations. A 
stable environment and a high correlation between genotype 
and phenotype facilitate this step. Thus, the advantageous 
trait originally acquired can become inherited though the 
Darwinian evolution.  

G. Hinton and S. Nowlan [2], D. Ackley and M. Littman 
[3], G. Mayley [4] and other researchers [5-8] analyzed the 

Baldwin effect by means of computer simulation. They 
showed that this effect could play important role in the 
process of evolution of the model organisms.  

In this paper, we design and investigate an evolution 
model of adaptive self-learning agents; the control system 
of agents is based on a neural network adaptive critic design 
(ACD). The ACD includes two neural networks (NNs): 
model and critic. The model predicts the state of the 
environment for the next time step, and the critic is used to 
select actions on the basis of this prediction. These NNs can 
be optimized by both learning and evolution. 

In comparison with other investigations of the Baldwin 
effect, our study pays the main attention to self-learning 
autonomous agents. Though our work is similar to that of D. 
Ackley and M. Littman [3], the control system of our agents 
is more theoretically justified. First, it is based on the ACD 
architecture, with the well-investigated temporal difference 
algorithm [9] as its learning method. Second, our agent 
control system includes the model NN, thereby allowing the 
agent to predict future environment states and use its 
predictions for action selection. Explicit predictions of 
future states can provide new capabilities in intelligent 
control systems of autonomous agents.   

In our setup, a population of agents evolves. At the birth 
of each agent, initial synaptic weights of its NNs form its 
genome. During the agent life, the weights of its NNs are 
adapted by means of reinforcement learning. Agents that 
learn well receive large rewards and procreate. Children 
inherit the genomes of their parents (initial synaptic weights 
of the NNs). The genomes of evolving agents are subjected 
to small mutations. If initial weights of some agents drift via 
mutations toward successful weights obtained in the course 
of learning, then such agents will learn faster and, hence, 
obtain more reward. During several generations, the starting 
weights can reach values which, from the behavioral 



standpoint, were obtained previously by the successful 
learning process. Thus, acquired synaptic weights 
effectively become inherited.  This scheme is in contrast 
with the direct inheritance of learned weights of parents by 
their children. 

This paper consists of six sections.  In Section II we 
describe the agent task.  Agent control system is described 
in Section III, followed by evolution specifics in Section IV.  
We describe our experiments and results in Section V, 
followed by conclusion in Section VI. 

 
II. AGENT TASK 

 
Inspired by [10], we consider an adaptive agent-broker. It 

predicts change of a stock price and tries to increase its 
wealth by buying and selling stocks. The agent has its 
resource distributed into cash and stocks. The sum of these 
is the net capital of the agent C(t). The state of the agent is 
characterized by the variable u(t), which is the fraction of 
stocks in the net capital of the agent. The environment is 
determined by the time series X(t), t = 1,2,…, where X(t) is 
the stock price at the moment t. The goal of the agent is to 
increase its capital C(t) by changing the value u(t). The 
capital dynamics is 
 С

(t+1) = 
С

(t) {1 + u(t+1) ∆X(t+1) / X(t)} × 

[1 - J |u(t+1) – u(t)|],    (1) 
 
where ∆X(t+1) = X(t+1) - X(t) is the current change of the 
stock price, J is a parameter that takes into account 
expenses of the agent when buying/selling stocks. The 
factor in the braces corresponds to the change of the capital 
as the result of stock price rise/drop.  The factor in the 
square brackets is the expenses of the agent when 
buying/selling stocks. Following [11], we use the 
logarithmic scale for the agent resource, i.e., R(t) = log C(t). 
The current agent reward r(t) is defined by the expression: 
r(t) = R(t+1) – R(t): 
 
r(t) = log {1 + u(t+1) ∆X(t+1) / X(t)} +  

log [1 - J |u(t+1) – u(t)|].    (2) 
 

For simplicity and unlike [10], we assume that the 
variable u(t) takes only two values, u(t) = 0 (all in cash) or  
u(t) = 1 (all in stock).  

 
III. A GENT CONTROL SYSTEM 

 
The agent control system is a simplified ACD. Our 

adaptive critic scheme consists of two neural networks: 
model and critic (see Fig.1). The goal of the adaptive critic 
is to maximize stochastically utility function U(t) [9]: 
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where r(t) is an instantaneous reward obtained by the agent, 
and γ  is the discount factor (0 < γ  < 1).  Assuming                
|∆X(t+1)| << X(t) for all t, we suppose that the ACD state 
S(t) at moment t is characterized by two values, ∆X(t) and 
u(t): S(t) = {X(t), u(t)}.  

 
The role of the model is to predict changes of the stock 

time series. The model output ∆XPr(t+1) is based on N 
previous values of ∆X, ∆X(t-N+1), … , ∆X(t), which are 
used as the model inputs.  The model is implemented as a 
multilayer perceptron (MLP) with one hidden layer of tanh 
nodes and linear output, and it is trained by the usual 
backpropagation method. 

The critic is intended to estimate the state value function 
V(S) (estimate of U in (3)) for the current state S(t) = 
{∆X(t), u(t)}, the next state S(t+1) = {∆X(t+1), u(t+1)}, and 
its predictions Spr

u(t+1) = {∆Xpr (t+1), u} for two possible 
actions, u = 0 or u = 1.  The critic is also a MLP of the same 
structure as the model, but it is trained by the temporal 
difference method [9].  
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Critic

Critic

 ∆X pr(t+1)

{∆X(t), u(t)}  V(t)

{∆X(t-N+1),…,∆X(t)}

 {∆X pr(t+1), u}  Vu 
pr(t+1)

 V(t+1) {∆X(t+1), u(t+1)}

 
Fig. 1. Our ACD. The model predicts changes of the time series. The critic 
(the same neural network is shown in two consecutive moments) forms the 
state value function for the current state S(t) = {∆X(t), u(t)}, the next state 
S(t+1) = {∆X(t+1), u(t+1)}, and its predictions Spr

u(t+1) = {∆Xpr (t+1), u} 
for two possible actions, u = 0 or u = 1. 
 

At any moment t, the following operations are 
performed: 

 
1) The model predicts the next change of the time series 
∆X(t+1).   
 
2) The critic estimates the state value function for the 
current state V(t) = V(S(t)) and the predicted states for both 
possible actions Vpr

u(t+1) = V(Spr
u(t+1)), where Spr

u(t+1) = 
{∆Xpr (t+1), u}, and u = 0 or u = 1.  
 



3) The ε -greedy rule is applied [9]. With the probability 1-ε  
the action corresponding to the maximum value Vpr

u(t+1) is 
selected, and an arbitrary action is selected with the 
probability ε  (0 < ε  << 1).  

 
4) The selected action is carried out. The transition to the 
next time moment t+1 occurs. The current reward r(t) is 
calculated in accordance with (2) and received by the ACD. 
The value ∆X(t+1) is observed and compared with its 
prediction ∆Xpr (t+1). The model NN weights are adjusted 
to minimize the prediction error using the error 
backpropagation and the gradient descent with α M >0 as the 
model learning rate.  

 
5) The critic computes V(t+1). The temporal-difference 
error is calculated: 

 δ
(t)  = r(t) + γ  V (t+1) – V (t) .           (4) 
 

6) The weights of the critic neural network are adjusted to 
minimize the temporal-difference error (4) using its 
backpropagation and the gradient descent with α C >0 as the 
critic learning rate. 

 
IV. EVOLUTION OF ADAPTIVE AGENTS 

 
Our evolving population consists of n agents. Each agent 

has a resource R(t) that changes in accordance with values 
of agent rewards: R(t+1) = R(t) + r(t), where r(t) is 
calculated in (2).  At the beginning of any generation, all 
agents have the same initial resource R(0). 

The initial synaptic weights of both NNs (model and 
critic) form the agent genome G. The genome G does not 
change during agent life, and it is fixed when the agent is 
born. However, synaptic weights of the NNs W are changed 
during agent life via learning described in Section III.  

Evolution passes through a number of generations, 
ng=1,2,…, Ng.  The duration of each generation ng is T time 
steps.  At the end of each generation, the agent having the 
maximum resource Rmax (ng) is determined. This best agent 
gives birth to n children that constitute a new (ng+1)-th 
generation. The children genomes G differ from their parent 
genome by small mutations. Mutations affect all elements 
of G, as a normally distributed random value with zero 
mean and standard deviation Pmut (mutation intensity) is 
added to each synaptic weight.  

At the beginning of every new (ng+1)-th generation, we 
set for each agent G(ng+1) = Gbest(ng) + mutations, 
W(ng+1) = G(ng+1), where Gbest(ng) is selected from the 
best agent of the previous ng-th generation.  Thus, the 
genome G changes only via evolution, whereas the synaptic 
weights W are adjusted only via learning. 

On average, we expect that the best agents will begin to 
accumulate R earlier with every new generation as the result 
of the Baldwin effect.  
 

V. RESULTS OF SIMULATIONS  
 
In our computer simulations we use two examples of 

model time series:  
 
1) sinusoid:  
  
X(t) = 0.5(1 + sin(2πt/20)) +1,          (5)               
 
2) stochastic time series from [10, Example 2]:  
 
β(t) = αβ(t-1) + γ(t), 

p(t) = p(t-1) + β(t-1) + k λ(t),  

X(t) = exp(p(t)/1200),               (6) 

 
where λ(t) and γ(t) are two random normal processes with 
zero mean and unit variance (N(0,1)), and where α = 0.9, 
k = 0.3. 
 

Some parameters are set to the same values for all 
simulations. Specifically, we set population size n = 10, 
discount factor γ = 0.9, number of inputs of the model NN 
N = 10, number of hidden neurons of the model and the 
critic NhM = NhC = 10, learning rate of the model and the 
critic αM = αC = 0.01, expenses of the agent when 
buying/selling stocks J = 0, and the initial resource of 
newborn agent R(0)=0. Other parameters (generation 
duration T, parameter ε  of the ε -greedy rule, mutation 
intensity Pmut) were set to different values, depending on the 
simulation, as specified below. 

For our experiments with the sinusoid (5), we compared 
the maximum resource in the population Rmax (ng) at the end 
of each generation in two cases:  
1) evolution of self-learning agents, as detailed in Section 

IV (the blue curve in Fig. 2), and  
2) pure evolution, i.e., without agent learning (the red 

curve in Fig. 2).  
The results are averaged over 1000 simulations with T = 

200, ε  = 0.05, Pmut = 0.01. Fig. 2 does indicate a significant 
advantage to combining evolution with learning. 

The rest of the paper discusses our results for the 
evolution of self-learning agents. Detailed dynamics of the 
best agent resource Rmax(t) for the sinusoidal X(t)  in a 
particular simulation is illustrated by Fig. 3 for the first five 
generations (note that Rmax(ng)=R(200k) of the best agent, 
where k=1,2,3,4,5). The parameters of the simulation are the 
same as for Fig. 2. Fig. 3 demonstrates the sequential 
improvement of agent policies. The well-adapted agent 
behaves in the following way. It buys stocks at the moments 
of predicting stock price rises and sells stocks when 
predicting stock price falls. This corresponds to the optimal 
policy. The agent capital periodically increases (when the 
stock price rises), and it remains approximately constant 
(when the stock price falls). Fig. 3 shows that, in the 1st 



generation, the best agent optimizes its policy by learning 
and finds a rough solution only by the end of this 
generation. Subsequently, the best agents find a satisfactory 
(close to optimal) policy faster and faster. By the 5th 
generation, a newborn agent “knows” a satisfactory policy 
as encoded in its genome G, and the learning does not 
improve the policy significantly. Thus, Fig. 3 demonstrates 
that, for the simple periodic dependence X(t), the initially 
learned policy becomes inherited.  
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Fig. 2. Two plots of the maximum resource in the population Rmax(ng) 
attained by the end of each generation vs. the generation number ng . The 
blue curve corresponds to the case of the evolution of self-learning agents 
(evolution is combined with learning, as detailed in Section IV), whereas 
the red curve corresponds to the case of pure evolution (without learning). 
Each point of the plots represents an average over 1000 simulations, each 
starting with a different random seed; T = 200, ε  = 0.05, Pmut = 0.01  

0

1

2

3

4

5

0 200 400 600 800 1000
t

R
m

ax

 
Fig. 3. The resource plot of the best agent in the population for a particular 
simulation; the case of sinusoidal time series (5), first five generations.  
The moments when generations end are shown by vertical lines; T = 200, ε  
= 0.05, Pmut = 0.01. Periodical increases (when the stock price rises) and 
approximately constant values (when the stock price falls) of Rmax 
correspond to optimal policy of the agent, e.g., such policy is observed in 
5th generation. See the text for details. 
 

Figs. 4 and 5 illustrate our simulation results for the 
stochastic time series (6). Fig. 4 shows dynamics of the best 

agent resource Rmax(t) for the first twelve generations. Fig. 5 
shows dynamics of the best agent action selection during 
the 2nd generation (3000 < t < 3500) (Fig. 5a), in the 12th 
generation (28300 < t < 28400) (Fig. 5b) and in the 48th 
generation (118500 < t < 119000) (Fig. 5c) for the same 
simulation. The time series X(t) is also shown in all figures. 
The parameters of this simulation are T = 2500, ε  = 0.03, 
Pmut = 0.03. Fig. 4 demonstrates that the agent resource at 
the end of each generation features an upward trend. During 
the early generations (generations 3 to 7), any significant 
increase of the agent resource begins only in the second half 
of the agent life. This means that the agent learning process 
takes a while before it finds an adequate policy. During the 
later generations (generations 9 to 12), the increase of the 
resource begins from the start of each generation, 
demonstrating that the advantageous policy becomes 
inherited.  
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Fig. 4a. The resource plot of the best agent in the population (blue); the 
stochastic time series; 1-6th generations; T = 2500, ε  = 0.03, Pmut = 0.03. 
The time series X(t) is red. 
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Fig. 4b. The resource plot of the best agent in the population (blue); the 
stochastic time series; 7-12th generations. The time series X(t) is red. 
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Fig. 5a. The time dependence of actions selected by the best agent in the 
population (blue); actions are characterized by values u(t): u = 0 (all in 
cash) and  u = 1 (all in stock); this is the 2nd generation fragment. The time 
series X(t) is red. 
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Fig. 5b. The time dependence of actions selected by the best agent in the 
population (blue); actions are characterized by values u(t): u = 0 (all in 
cash) and  u = 1 (all in stock); this is the 12th generation fragment. The time 
series X(t) is red. 
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Fig. 5c. The time dependence of actions selected by the best agent in the population (blue); actions are characterized by values u(t): u = 0 (all in cash) and  
u = 1 (all in stock); this is the 48th generation fragment. The time series X(t) is red. 
 

Figs. 4 and 5 demonstrate that, at the beginning of 
evolution, the agents do not find an effective policy. For 
example, during the 2nd generation the best agent prefers to 
keep all capital in cash, i.e., u = 0 almost all the time in this 
case (Fig. 5a). However, by the 12th generation the best 
agent finds a reasonable policy (Fig. 5b). It buys/sells 
stocks when correctly predicting imminent stock price 
increases/decreases. It should be noted that the agent policy 
is not always optimal. For example, at t = 28315, 28332, 
28380, the trend changes from the price rise to the price 
fall.  However, the agent does not sell stocks immediately 
at these moments. It appears to be waiting for the down 
trend to become more salient, namely, to reach a 
sufficiently large negative values of ∆X(t). 

In the 48th generation (Fig. 5c) the agent demonstrates an 
interesting rational behavior. Anticipating moderate stock 
price increase, the agent usually transforms its capital into 

stocks. In contrast, anticipating moderate stock price 
decrease, the agent demonstrates searching behavior. It tries 
randomly to transform its capital into stocks for a short time 
(e.g., at t = 118550, 118850, 118980). Such random 
searching tactic can be useful, if the agent is not confident 
about future changes of environment. The tactic is to some 
extent asymmetrical, i.e., the agent prefers to keep its 
capital in stocks (see also Fig. 5b), as if hoping to get future 
positive rewards (profits) during possible stock price 
increases. Thus, the agent switches its behavior between 
two tactics (buy stocks or sell stocks). Such process of 
switching appears to have both inertial and random search 
components.    

It should be noted that the behavior with switching 
between two tactics is analogous to searching tactics of 
simple animals. For example, some species of caddis fly 
larvae use similar tactics for case building [12, 13]. The 



larvae inhabit creek bottoms and build their cases from hard 
particles of different size. They can use small or large sand 
particles [12]. Large particles are distributed randomly, but 
typically in groups of several particles. Using large 
particles, the larva can build cases more quickly and 
effectively than with small particles, so its preference is 
evident. The larva uses two tactics: 1) testing particles in its 
vicinity and building the case from selected particles, 2) 
searching for a new place with a collection of appropriate 
particles. Investigations of larva behavior reveal inertia in 
switching from the first tactic to the second tactic [12, 13]. 
If the larva finds a large particle, it continues testing 
particles until it finds several small particles, and only after 
repeated failures to find new large particles does the larva 
switch to the second tactic. During searching for a new 
place, the larva wanders and sometimes randomly tests 
particles along its way. It can switch from the second tactic 
to the first tactic, if it finds a large particle. When switching 
from the second tactic to the first tactic, it also exhibits 
inertia. The switching between tactics resembles a random 
search with inertial effects.   

The larva behavior appears to have similarities with our 
agent-broker behavior. We can view the agent keeping the 
capital in stocks (u = 1) as an equivalent of the first larva 
tactic.  Indeed, both the agents and the animal can obtain a 
profit pursuing this tactic: the agent may obtain a positive 
reward, and the larva may build its case more effectively. 
The second tactic (keeping u = 0 or brisk switching 
between different u for the agent, and searching for a new 
place for the larva) is waiting/searching for conditions for 
profitable actions. Switching between the tactics appears to 
include essentially random components for both the agent 
and the larva, as well as switching inertia. It is reasonable to 
assume that both the random switching and the inertia are 
due to insufficient knowledge of both the agent and the 
larva about their respective environments.  

 
VI. CONCLUSION  

 
 We demonstrated evolutionary assimilation of acquired 
features (the Baldwin effect) in a population of self-
learning agents, in which agent control systems are based 
on a neural network adaptive critic design. The agent task 
was that of a broker, previously considered in [10, Example 
2].  We did not intend to improve the results of [10] 
because our goal was to study the Baldwin effect on a 
relatively simple but sufficiently illustrative problem.   
 Our simulations also demonstrated that the agents learn 
different behavioral tactics in analogy to adaptive behavior 
of simple animals.  Of course, more detailed studies are 
needed to understand thoroughly the relationship and 
analogies between these behaviors. 

 Our work describes a possible approach to investigation 
of evolution of autonomous adaptive agents.  Different 
learning algorithms for agent control systems may be 
employed, without changing the fundamental outcome.  
 Our future research can include: 

- a more detailed analysis of interaction between 
learning and evolution; 

- an investigation on the role of prediction in 
shaping adaptive behavior of autonomous agents; 

- a more thorough comparison of agent behavior 
with adaptive behavior of simple animals. 
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