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Abstract — We propose a general scheme of intelligent 

adaptive control system based on the Petr K. Anokhin's theory 
of functional systems. This scheme is aimed at controlling 
adaptive purposeful behavior of an animat (a simulated animal) 
that has several natural needs (e.g., energy replenishment, 
reproduction). The control system consists of a set of 
hierarchically linked functional systems and enables predictive 
and goal-directed behavior. Each functional system includes a 
neural network based adaptive critic design. We also discuss 
schemes of prognosis, decision making, action selection and 
learning that occur in the functional systems and in the whole 
control system of the animat. 

 
I.  INTRODUCTION 

 
In the early 1990s, the animat approach to artificial 

intelligence (AI) was proposed. This research methodology 
implies understanding intelligence through simulation of 
artificial animals (animats) in progressively more 
challenging environments [1, 2]. The main goal of this field 
of research is “designing animats, i.e., simulated animals or 
real robots whose rules of behavior are inspired by those of 
animals. The proximate goal of this approach is to discover 
architectures or working principles that allow an animal or a 
robot to exhibit an adaptive behavior and, thus, to survive or 
fulfill its mission even in a changing environment. The 
ultimate goal of this approach is to embed human 
intelligence within an evolutionary perspective and to seek 
how the highest cognitive abilities of man can be related to 
the simplest adaptive behaviors of animals” [3]. 

 
In this paper we propose a general scheme of an animat 

control system based on the theory of functional systems. 
This theory was proposed and developed in the period 1930-
1970s by Russian neurophysiologist Petr K. Anokhin [4] and 

provides general schemes and regulatory principles of 
purposeful adaptive behavior in biological organisms. In 
addition to the theory of functional systems, we use the 
important approach to development of intelligent control 
systems called adaptive critic designs (ACD) [5-10]. Using 
neural network based ACD, we propose a hierarchical 
control system for purposeful adaptive behavior. This paper, 
along with [11], represents our first attempt to design an 
animat brain from the principles of the theory of functional 
systems. Some ideas of the current work are similar to those 
of the project “Animal” initiated by Bongard et al. in the 
1970s [12], as well as to those of proposals by Werbos on 
brain-like multi-level designs  [13]. Schemes and designs 
proposed here are intended to provide a framework for a 
wide range of computer simulation models. 

 
Section II reviews the Anokhin's theory of functional 

systems.  Section III describes an ACD used in the current 
work.  Section IV contains the description of the whole 
control system.  Section V concludes the paper. 

 
II.  ANOKHIN’S THEORY OF FUNCTIONAL SYSTEMS 

 
Functional system was proposed in 1930s as “a complex 

of neural elements and corresponding executive organs that 
are coupled in performing defined and specific functions of 
an organism. Examples of such functions include 
locomotion, swimming, swallowing, etc. Various anatomical 
systems may participate and cooperate in a functional system 
on the basis of their synchronous activation during 
performance of diverse functions of an organism" [14].  

Functional systems were put forward by P.K. Anokhin as 
an alternative to the predominant concept of reflexes. 
Contrary to reflexes, the endpoints of functional systems are 



not actions themselves but adaptive results of these actions. 
This conceptual shift requires understanding of biological 
mechanism for matching results of actions to adaptive 
requirements of an organism, which are stored as 
anticipatory models in the nervous system. A biological 
feedback principle was introduced in the scheme of the 
functional system in 1935 as a backward afferentation 
flowing through different sensory channels to a central 
nervous system after each action [15]. An anticipatory neural 
template of a required result placed into memory before each 
adaptive action was called an acceptor of the result of action 
[16]. The term acceptor carries two meanings derived from 
its Greek root: (1) acceptor as a receiver of the action’s 
feedback, and (2) acceptor as a neural template of the goal to 
be compared with feedback and, in the case of positive match 
between the model and feedback, followed by the action’s 
acceptance.  

In contrast to reflexes, which are based on linear spread of 
information from receptors to executive organs through the 
central nervous system, functional systems are self-
organizing non-linear systems composed of synchronized 

distributed elements.  The main experimental issues of 
research on functional systems amounted to understanding 
how this self-organization is achieved and how information 
about the goal, plans, actions and results is represented and 
processed in such systems.  These studies led to creation of 
the conceptual scheme of stages of adaptive behavioral acts 
shown in Fig. 1.  

The main stages of the functional system operation are 
(see Fig.1):  
1) afferent synthesis,  
2) decision making,  
3) generation of the acceptor of the action result,  
4) generation of the action program (efferent synthesis),  
5) performance of an action,  
6) attainment of the result,  
7) backward afferentation (feedback) to the central nervous 

system about parameters of the result,  
8) comparison of the result with its model generated in the 

acceptor of the action result. 
 

 

Motivation 

Memory 

Efferent excitations 

Backward afferentation 

Program 
of action

Acceptor of 
action result 

Decision 
making 

CA 

CA 

SA Result of 
action 

Parameters 
of result  

Action 

Afferent synthesis 

 
Fig. 1. General architecture of a functional system. SA is starting afferentation, CA is contextual afferentation.  Operation of the functional system includes: 1) 
preparation for decision making (afferent synthesis), 2) decision making (selection of an action), 3) prognosis of the action result (generation of acceptor of 
action result), 4) backward afferentation (comparison between the result of action and the prognosis). See the text for details. 

 
Operation of the functional system is described below.  
The afferent synthesis precedes each behavioral action and 

involves integration of neural information from a) dominant 
motivation (e.g., hunger), b) environment (including 
contextual and conditioned stimuli), and c) memory 
(including evolved biological knowledge and individual 
experience). The afferent synthesis can occupy a substantial 

time and involve cycles of reverberation of signals among 
various neural elements.  

The afferent synthesis ends with decision making, which 
means a reduction of redundant degrees of freedom and 
selection of a particular action in accordance with a dominant 
need, organism's experience and environmental context.  

The efferent synthesis is preparation for the effectory 
action and further reduction of the excessive degrees of 



freedom by selection of actions most suitable for the current 
organism's position in space, its posture, information from 
proprioreceptors, etc. 

The acceptor for the action result is being formed in 
parallel with the efferent synthesis.  This produces an 
anticipatory model of the required result of action. Such a 
model includes formation of a distributed neural assembly 
that stores various (i.e., proprioreceptive, visual, auditory, 
olfactory) parameters of the expected result. 

Performance of every action is accompanied by backward 
afferentation. If parameters of the actual result are different 
from the predicted parameters stored in the acceptor of action 
result, a new afferent synthesis is initiated. In this case, all 
operations of the functional system are repeated until the 
final desired result is achieved.  

Thus, operation of the functional system has a cyclic (due 
to backward afferent links), self-regulatory organization.   

A separate important branch of the general functional 
system theory is the theory of systemogenesis that studies 
mechanisms of functional systems formation during 1) 
evolution, 2) individual or ontogenetic development, and 3) 
learning.  In the current paper we consider learning only, i.e., 
improvement of functional systems operation based on 
individual experience. 

It should be stressed that the theory of functional systems 
was proposed and developed in order to interpret a volume of 
neurophysiological data. This theory was formulated in very 
general and intuitive terms. We are only in the beginning of 
formalization of the theory of functional systems by means 
of mathematical and computer models [11,17]. Though 
formal powerful models of this theory are not created yet, it 
is supported by numerous experimental data and provides an 
important conceptual basis to understanding brain operation. 
This theory could help us to understand neurophysiological 
aspects of prognosis, prediction, and creation of causal 
relationship among situations in animal minds. The theory of 
functional systems could also serve as a conceptual 
foundation for modeling of intelligent adaptive behavior.  

We propose a simple formalization of the functional 
system, and we use this formalization for designing the 
whole animat control system. Our functional system includes 
the following important features of its biological prototype: 
a) prognosis of the action result, b) comparison of the 
prognosis and the result, and c) correction of prognosis 
mechanism via learning in appropriate neural networks. Our 
functional system utilizes one of the possible schemes of 
ACD, as described in the next section. 

 
III.  NEURAL NETWORK BASED ADAPTIVE CRITIC DESIGN 
 
Our adaptive critic scheme consists of two neural network 

based blocks: model and critic (see Fig.2).  For simplicity, 
we assume that both neural networks are differentiable feed-
forward multilayer perceptrons, and that their derivatives can 
be computed via the well known back-propagation 
algorithm.  Depending on the problem, other network 

architectures with their associated training methods may be 
more suitable to employ. In particular, recurrent neural 
networks can be used instead of feed-forward perceptrons in 
order to ensure short-term memory in the form of neural 
exitation activity.  

We suppose that our adaptive critic serves to select one 
from several actions.  For example, for movement control the 
actions can be move forward, turn left, turn right.  The 
animat in any moment t should select one of these actions.   

The goal of our adaptive critic is to maximize 
stochastically utility function U(t): 

∑
∞

=

=
0

)()(
j

j
j trtU γ ,  t = t0, t1, t2,…,  (1) 

where r(tj) is a particular reinforcement (reward, r(tj) > 0, or 
punishment, r(tj) < 0) obtained by the adaptive critic at the 
moment tj, and γ is the discount factor (0 < γ < 1).  In general, 
the difference tj+1 - tj may be time varying, but for notational 
simplicity we assume that τ = tj+1 - tj = const. 
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Fig. 2. The adaptive critic scheme used in our functional system.  The model 
predicts the next state Spr

i(t+τ) for all possible actions ai,  i=1,2,…, na.  The 
current state S(t), the prediction Spr

i(t+τ) and the next state S(t+τ) are fed 
into the critic (the same neural network is shown in two consecutive time 
moments) to form the corresponding values V(S(t)), V(Spr

i(t+τ)) and 
V(S(t+τ)) of the state value function.  

 
The model has two kinds of inputs: 1) a set of inputs 

characterizing the current state S(t) (signals from external 
and internal environments of animat), and 2) a set of inputs 
characterizing actions. We assume that any possible action ai 
is characterized by its own combination of inputs and that the 
number of possible actions is small.  The role of the model is 
to make predictions of the next state for all possible actions 
ai,  i=1,2,…, na.  

The critic is intended to estimate the state value function 
V(S) for the current state S(t), the next state S(t+τ) and its 
predictions Spr

i(t+τ) for all possible actions.  
 
At any moment of time the following operations are 

performed: 



1) The model predicts the next state Spr
i(t+τ) for all 

possible actions ai , i =1,…, na .  
 
2) The critic estimates state value function for both the 

current state V(t) = V(S(t)), and predicted states Vpr
i(t+τ) = 

V(Spr
i(t+τ)). The values V are estimates of the utility function 

U. 
 
3) The ε-greedy rule is applied [18], and the action is 

selected as one of the two alternatives below:  
 
k = arg  max i{V(Spr

i(t+τ))} with probability 1- ε,  
 
OR 
 
k is index of an arbitrary state-meaningful action randomly 

chosen with probability ε,  
 
where k is index of selected action ak .   

 
4) The action ak is carried out. 
 
5) The current reinforcement r(t) is received (or estimated) 

before or after the transition to the next time moment t+τ 
occurs. The next state S(t+τ) is observed and is compared 
with the predicted state Spr

k(t+τ). The neural network 
weights WM of the model may be adjusted to minimize the 
prediction error: 

 
∆ WM = αM gradWM(Spr

k(t+τ))T(S(t+τ) - Spr
k(t+τ)) , (2) 

 
where  αM  is the learning rate of the model.  

 
6) The critic estimates V(S(t+τ)). The temporal-difference 

error is calculated: 
 
δ(t)  = r(t) + γ V (S(t+τ)) - V (S(t)) .   (3) 
 
7) The weights WC of the critic neural network may be 

adjusted:  
 
∆ WC = αC δ(t) gradWС(V(t)) ,   (4) 

 
where αC is the learning rate of the critic.  The gradients 
gradWM(Spr

k(t+τ)) and gradWС(V(t)) mean derivatives of the 
outputs of the networks with respect to all appropriate 
weights. Instead of (4), we can use a more complex 
temporal-difference learning scheme from [18]. 
 

The described adaptive critic design is the core of our 
functional system.  Many functional systems form the entire 
animat control system, as described in the next section.  

 

IV.  DESIGN OF ANIMAT CONTROL SYSTEM 
 
We suppose that animat control system has a hierarchical 

architecture (Fig. 3). The basic element of this control system 
is our adaptive critic based functional system (FS). Each FS 
makes a prognosis of the next state and selects actions in 
accordance with the currently dominant animat need and the 
current state. 
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Fig. 3. Hierarchical structure of the animat control system.  FS* represents a 
separate functional system. 

 
The highest level of the hierarchy (FS0) corresponds to 

survival of the simulated animal.  The next level (FS1, 
FS2,…) corresponds to the main animal needs (e.g.,  energy 
replenishment, reproduction, security, knowledge 
acquisition). Lower levels correspond to tactical goals and 
sub-goals of behavior.  

Control commands can be delivered from high levels 
(super-system levels) to low levels (sub-system levels) and 
returned back. They include activation commands (delivered 
from a super-system to its sub-system) and report commands 
(delivered from a sub-system to a super-system).  These 
commands enable propagation of activity through the entire 
control system. For simplicity in this work we suppose that, 
at any time moment, only one FS is active. 

The detailed structure of our FS is shown in Fig. 4. In its 
core is the ACD described in Section III. The main 
differences between operation of the ACD and that of the FS 
are 1) the FS additionally forms commands for sub-systems 
and reports to super-systems, and 2) comparison between the 
prognosis Spr

k(t+τ) and the result S(t+τ) can be postponed 
until the moment t+τ, when reports from sub-systems are 
received (see below for details).  Links of the given FS to a 
super-system/sub-system are shown by vertical solid/dotted 
arrows.   
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Fig. 4. Scheme of the functional system based on the adaptive critic design.  
The symbolic notation is the same as in Fig. 2 (see Section III). 

 
We assume the following scheme of operation of the FS 

within the animat control system. The FS is activated by the 
command from a super-system.  The model and the critic 
operate in the same manner as described in Section III, and 
the action ak is selected.  Further operation depends on the 
kind of action ak.  Some actions are commands for effectors, 
and these actions are executed immediately; in this case τ = 
τmin, the smallest time interval allowed in the system.  Then 
the animat reinforcement r is received from external or 
internal environment, and the ACD neural network learning 
is carried out.  

Another type of actions is a command for sub-systems.  
For such an action, the command to activate a certain sub-
system is delivered (which sub-system to activate is 
determined by the selected action ak). In this case the 
comparison of prognosis and result, the estimation of 
reinforcement value r and learning of the neural networks are 
postponed until the moment t + τ, where τ > τmin.  

Thus, operations in the FS are actually the same in both 
cases, the main difference being the moment of learning t+τ 
(e.g., τ can be much larger than τmin). After accomplishing all 
these operations, the FS sends a report about completion of 
its activity to an appropriate super-system. 

 
The described mode of FS operation represents the 

ordinary mode of functioning. We also specify the 
extraordinary mode taking place if the prognosis differs 
substantially from the actual result: || Spr

k(tj) - S(tj) || > ∆ > 0, 
where || . || denotes some norm, e.g. Euclidean. We suppose 
that in the extraordinary mode the values ε (the probability of 
choosing a random (but meaningful) action; see Section III) 
of the given FS and its sub-systems increase significantly, so 
that search for new solutions includes a large random 
component to achieve suitably wide exploration.  This search 
can be accompanied by a random generation and selection of 

new functional systems, similar to neural group selection in 
the theory of neural Darwinism [19]. Thus, the ordinary 
regime of operation can be considered as fine tuning of the 
animat control system, whereas the extraordinary regime is a 
coarse search for a suitable adaptive behavior in unexpected 
situations. 

 
Our control system clearly assumes priority and 

supervision by high-level FS. For example, if a danger signal 
is received by FS1 (which controls security of the animat), 
while the animat is searching for food within the branch 
controlled by FS2 (corresponding to energy replenishment), 
the FS1 is able to interrupt the search for food and turn on a 
security behavior by activating an appropriate FS. 

 
The memory of neural networks in the abovementioned FS 

may be prone to forgetting because of learning (reflecting the 
well known stability-plasticity dilemma). It is possible to 
include long-term memory of the acquired skills into our 
control system. If a certain type of behavior was well tested 
and became reliable, the corresponding FS could be copied 
into long-term memory, namely into the long-term FS, in 
which values ε and αC , αM  are equal to zero. The both short-
term FS (with normal values of ε and αC , αM or with large 
values of ε) and long-term FS could perform the same 
operations in the same design structure. For reliable skills, 
the long-term FS have priority over the short-term FS. 
However, if prognoses of states Spr made by the long-term 
FS differ from actual states S, the control returns to the short-
term FS. 

 
V. DISCUSSION AND CONCLUSION 

 
The proposed ACD based scheme of the animat control 

system provides a general approach to modeling adaptive 
behavior of an animat with natural needs and corresponding 
motivations, goals and sub-goals. In particular, our proposal 
appears to be quite appropriate for developing Alife models 
of purposeful adaptive behavior of agents described in [20, 
21] in which simple hierarchical structures of agent control 
systems are shown to have emerged through evolutionary 
self-organization of neural networks.  

It should be noted that the system proposed here differs 
from the system described in our previous work [11], in 
which we assume that super-systems deliver more explicit 
tasks and goals to sub-systems. The current ACD based 
design seems to be more flexible than the design of [11]. 
However, the referenced architecture with explicit goals is 
still interesting and it can be used for further development of 
animat brain architectures.  

The described version of the animat control system is 
based on a simplified version of ACD. Naturally, ACD 
architectures can include additional blocks (controller 
network, reference model, etc.) represented by more 
powerful recurrent neural networks [22], and provide 
opportunities to develop more intelligent animat brain 



designs. In particular, a reference model in ACD can operate 
analogously to the reference signal in Powers's perceptual 
control systems [23].   
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