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Abstract - Approaches to investigation of evolutionary roots of 
human intelligence are discussed. It is argued that the natural 
way to this study is to analyze cognitive evolution, evolution of 
animal cognitive abilities by means of mathematical/computer 
modeling. The area of investigations “Simulation of Adaptive 
Behavior” that can be considered as a first step towards 
modeling cognitive evolution is briefly characterized. The 
project “Animat Brain” (a framework for simulation of 
adaptive behavior) is described. The sketch program for future 
modeling of the cognitive evolution is proposed. 
 
Keywords - Cognitive evolution, adaptive behavior, problem of 
intelligence origin, computer modeling 

I. INTRODUCTION 

A. What Is a Path to Human Level Intelligence? 
Several interesting attempts to analyze ways to 

understand and to model human level intelligence are 
initiated now. The special session “Towards Human-
Level Intelligence” was organized by W. Duch and N. 
Kasabov at World Congress on Computational 
Intelligence in 2006 (at WCCI 2006). The similar session 
“Cognitive Architectures: Towards Human-Level 
Intelligence” will be at WCCI 2008 (organized by W. 
Duch, B. Goertzel, B.-T. Zhang) [1]. Several scientists, 
who work in fields of evolutionary modeling, neural 
networks, autonomous adaptive systems, cognitive 
science and psychology, proposed the Decade of Mind 
Initiative [2], intending to organize interdisciplinary 
investigations of mind and natural intelligence. 
Discussions of research steps directed to investigate the 
mind of scientists take place in Russian Neural Network 
Society; these discussions are organized by W.L. Dunin-
Barkowski. Interesting proposals for modeling 
neurocognitive intelligent processes are made in the 
collective monograph “Challenges for Computational 
Intelligence” [3]. The current work proposes an approach 
towards investigations of evolutionary roots of natural 
intelligence by means of modeling cognitive evolution. 

B. Actuality of Modeling Cognitive Evolution 
Studies of cognitive evolution are related with a very 

profound epistemological problem: why is human mind 
applicable to cognition of nature? To emphasize the 
problem, let us consider physics. The power of physics is 
due to effective use of mathematics. However, why are 

mathematical deductions applicable to studies of real 
physical phenomena? Indeed, a mathematician makes 
logical inferences, proves theorems, basing on his mind, 
independently from physical world. Why are his results 
applicable to real nature? More generally, the problem 
can be stated as follows: why is human mind applicable 
to cognition of nature? 

In order to investigate the stated problem seriously, it 
is reasonable to analyze it by means of mathematical and 
computer models. Modeling cognitive evolution, we can 
analyze, why and how did animal and human cognitive 
features emerge, how did applicability of human mind to 
cognition of nature origin. 

Fortunately, there is a direction of research 
“Simulation of Adaptive Behavior”, some models of 
which can be considered as a first step of modeling 
cognitive evolution. This direction is outlined in Section 
II. The project “Animat Brain” that proposes a 
framework for modeling of different forms of adaptive 
behavior is described in Section III. A particular model 
of simple agents that can be used as elements of the 
Animat Brain architecture is presented in Section IV. The 
sketch program for future modeling of the cognitive 
evolution is proposed in Section V. 

II. SIMULATION OF ADAPTIVE BEHAVIOR 

In the early 1990s, the animat approach to artificial 
intelligence researches was proposed [4]. The term 
“animat” originates from two words: animal + robot = 
animat. The main goal of this field of research is 
“designing animats, i.e., simulated animals or real robots 
whose rules of behavior are inspired by those of animals. 
The proximate goal of this approach is to discover 
architectures or working principles that allow an animal 
or a robot to exhibit an adaptive behavior and, thus, to 
survive or fulfill its mission even in a changing 
environment. The ultimate goal of this approach is to 
embed human intelligence within an evolutionary 
perspective and to seek how the highest cognitive 
abilities of man can be related to the simplest adaptive 
behaviors of animals” [5]. 

Note that the ultimate goal of the animat approach is 
similar to the goals of modeling cognitive evolution. 

The animat researches are highly interdisciplinary; 



they are at the interface of neurosciences, cognitive 
science, ethology and ecology, on the one hand, of 
computer science and robotics, on the other hand. 

Several universities and laboratories work actively in 
this field. These laboratories include: 

• AnimatLab (Paris, leaded by J.-A. Meyer) that is 
conducting several projects on autonomous adaptive 
systems ( http://animatlab.lip6.fr/index.en.html ). 
AnimatLab approach implies that animat control system 
can formed by means of 1) leaning, 2) ontogenetic 
development, and 3) evolutionary search. 

• Artificial Intelligence Laboratory, University of 
Zurich (http://www.ifi.unizh.ch/groups/ailab/, leaded by 
R. Pfeifer). The approach of this laboratory includes 1) 
modeling biological systems, 2) investigation of 
principles of intelligence that are common for animals 
and human, 3) using these principles at designing robots 
and other animats.  

• Laboratory of Artificial Life and Robotics, Institute 
of Cognitive Sciences and Technologies (Rome, leaded 
by Stefano Nolfi, http://gral.istc.cnr.it/ ). This laboratory 
works in the field of evolutionary robotics. 

• The Neurosciences Institute, founded by G. Edelman 
(USA, San Diego, http://www.nsi.edu/ ). The researchers 
of this institute develop generations of brain models and 
study adaptive behavior of Brain-Based Devices. 

Investigations of adaptive behavior are based on 
nontrivial computational intelligence methods: 

• Neural networks, 
• Genetic algorithm and other methods of evolutionary 

computations, 
• Classifier Systems [6], 
• Reinforcement Learning [7]. 
It should be underlined that the phenomenological 

approach is often used at adaptive behavior simulations. 
This approach implies that there are formal rules for 
adaptive behavior and these rules are not necessarily 
connected with concrete microscopic neural or molecular 
structures of living organisms. It is natural to expect, that 
the phenomenological approach for adaptive behavior 
studies should be effective at modeling cognitive 
evolution (at least at the initial stages of investigations), 
because it is very difficult to understand cognitive 
features on the basis of the analysis of all complex 
variety of functioning of neurons, synapses, and 
molecules. 

Analysis of adaptive behavior investigations shows 
that instead of large research work, the developed models 
are rather fragmentary. So, a general framework for 
modeling animat behavior would be useful. In order to 
develop such framework, the project “Animat Brain” was 
proposed. The architecture of animat control systems that 
are analyzed in this project is outlined in the next section. 

III. PROJECT “ANIMAT BRAIN” 

We have developed several versions of Animat Brain1  
design [8-10]. The Animat Brain architecture supposes 
that the animat control system consists of neural network 
(NN) blocks. Each block is a formal functional system 
(FS) [11] that forms the action A(t) in accordance with 
given state S(t), and makes prognosis of the next state for 
given S(t) and A(t). The state S(t) characterizes both 
external and internal environments of the animat at given 
moment of time t (t = 1,2,…). At any moment, only one 
FS is active, in which the current action is formed. There 
are connections between FSs; the active FS can transmit 
activation to every FS through these connections. 

Each FS consists of two NNs: the actor and the 
predictor. Operation of the active FS can be described as 
follows. The state vector S(t) is fed to the FS input. The 
actor forms the action A(t) in accordance with given state 
S(t), i.e. the actor forms the mapping S(t) -> A(t). The 
predictor makes prognosis of the next state for given 
vectors S(t) and A(t), i.e. the predictor forms the mapping 
{S(t), A(t)} -> Spr(t+1). Activation is transmitted from 
one FS to others in accordance with connectivity matrix 
||Cij||, the value Cij characterizes the probability that the  
j-th FS is activated by the i-th FS. 

The animat receives reinforcements (rewards and 
punishments) which are related to animat needs.  

It is supposed that there are primary and secondary 
repertoires of behaviors. The primary repertoire is 
formed by evolution: there is a population of animats and 
a set of FSs, synaptic weights of NNs and connectivity 
matrix ||Cij|| are adjusted during evolutionary processes. 
The secondary repertoire is formed by NN learning. 

A particular version of the Animat Brain is based on 
adaptive critic design (ACD) [12]. In this case each FS is 
a simple ACD. In order to investigate features of such 
FS, we consider a simple model of evolving population 
of autonomous adaptive agents and study the ACD 
operation by means of computer simulation [13]. The 
results of these simulations are outlined below. 

IV. BEHAVIOR OF SIMPLE ADAPTIVE AGENTS  

A. Agent Control System    
We consider the model of simple adaptive agents that 

make actions and predict results of actions. For 
concreteness we analyze agent-brokers that predict future 
changes of the stock price and try to increase they wealth 
by buying and selling stocks. The agent has its resource 
distributed into cash and stocks. The sum of cash and 
stocks is the net capital of the agent C(t); t is time 
moment; t = 1,2,… The agent decision is to change the 
fraction of the agent's capital u(t) that is currently 
invested in stocks. The environment is determined by the 
time series X(t), where X(t) is the stock price at the 
                                                 
1 The term “Animat Brain” was proposed by Konstantin V. Anokhin. 



moment t. The goal of the agent is to increase its capital 
C(t) by changing the value u(t). The capital dynamics is 
described by the equation: 

 
           С(t+1) = С(t) {1 + u(t+1) ∆X(t+1) / X(t)} ,        (1) 

 
where ∆X(t+1) = X(t+1) – X(t) is the current change of 
the stock price. It is convenient to use the logarithmic 
scale for the agent resource, i.e., R(t) = log C(t). The 
current agent reward is r(t) = R(t+1) – R(t): 

 
             r(t) = log {1 + u(t+1) ∆X(t+1) / X(t)} .             (2) 

 
For simplicity we assume that the variable u(t) takes 

only two values, u(t) = 0 or  u(t) = 1. 
The agent control system is the ACD that consists of 

two NNs: a model and a critic (Fig. 1). This architecture 
is slightly modified as compared with that of described in 
previous section. However, the modification is not large; 
it is due to the task that the considered agents solve.  

The method of reinforcement learning [7] is used in 
this model. The method implies that agent learning is 
unsupervised (without a teacher); it is based on agent 
rewards r(t). 

The goal of the ACD is to maximize the utility 
function U(t) [7]: 
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where r(t) is determined by (2), γ is the discount factor  
(0 < γ < 1). Making the realistic assumption |∆X(t+1)| << 
X(t), we specify that the state S(t) is: S(t) = {∆X(t), u(t)}. 
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Fig. 1. The NN control system of the agent. The model predicts 
changes of the time series. The critic (the same NN is shown in 
two consecutive moments) forms the state value function for 
the current state S(t}, the next state S(t+1), and its predictions 
Spr

u(t+1) for two possible actions, u = 0 or u = 1. 

 

The role of the model is to predict changes of the stock 
time series. The model is implemented as a NN with one 
hidden layer of tanh nodes and linear output. 

The critic is intended to estimate the state value 
function V(S) (estimate of U in (3)) for the current state 
S(t) = {∆X(t), u(t)}, the next state S(t+1) = {∆X(t+1), 
u(t+1)}, and its predictions Spr

u(t+1) = {∆Xpr (t+1), u} 
for two possible actions, u = 0 or u = 1. The critic is also 
a NN of the same structure as the model. 

The agent behavior is optimized by both individual 
learning and evolution of agent population. 

B. Learning Algorithm  
At any moment t, the following operations are 

performed: 
1) The model predicts the next change of the time 

series ∆X(t+1).   
2) The critic estimates the state value function for the 

current state V(t) = V(S(t)) and the predicted states for 
both possible actions Vpr

u(t+1) = V(Spr
u(t+1)), where 

Spr
u(t+1) = {∆Xpr (t+1), u}, and u = 0 or u = 1.  
3) The ε-greedy rule [7] is applied: the action 

corresponding to the maximum value Vpr
u(t+1) is selected 

with probability 1–ε, and an alternative action is selected 
with probability ε (0 < ε << 1). 

4) The selected action is carried out. The transition to 
the next time moment t+1 occurs. The current reward r(t) 
is calculated in accordance with (2) and received by 
ACD. The value ∆X(t+1) is observed and compared with 
its prediction ∆Xpr (t+1). The NN weights of the model 
are adjusted to minimize the prediction error using the 
error backpropagation.  

5) The critic computes V(t+1). The temporal-
difference error is calculated [7]: 

 
            δ(t)  = r(t) + γ V(t+1) – V(t) .                          (4) 
 
6) The weights of the NN of the critic are adjusted to 

minimize the temporal-difference error (4). 

C. Evolutionary Algorithm  
In addition to learning, the evolution of agent 

population is considered. An evolving population 
consists of n agents.  Each agent has a resource R(t) that 
changes in accordance with values of agent rewards r(t) . 

Evolution passes through a number of generations, ng = 
1,2,…  The duration of each generation ng is T time steps 
(agent lifetime). At the beginning of any generation, 
initial resource of each agent is zero. 

The initial synaptic weights (received at agent birth) of 
both NNs form the agent genome G. The genome G does 
not change during the agent life. However, temporary 
synaptic weights of the NNs are changed during agent 
life via learning.  

At the end of each generation, the agent having the 
maximum resource Rmax (ng) is determined (the best 



agent of the generation ng). This best agent gives birth to 
n children that constitute a new (ng+1)-th generation. The 
children genomes G differ from their parent genome by 
small mutations. 

D. Results of Simulations 
In our computer simulations, we deal with two 

examples of the time series X(t): sinusoidal (with the 
period of 20 time moments) and stochastic time series. 

 The simulation parameters are as follows: discount 
factor γ = 0.9, number of inputs of the model NN m = 10, 
number of hidden neurons of the model and critic NhM = 
NhC = 10, learning rate of the model and critic αM = αC = 
0.01, parameter of the ε-greedy rule ε = 0.05, mutation 
intensity Pmut = 0.1, population size n = 10. 

We analyze the following cases: 
- Case L (pure learning); in this case we consider a 

single agent that learns by means of temporal 
difference method, see Eqs. (2)-(4); 

- Case E (pure evolution), i.e., evolving population 
without learning; 

- Case LE, i.e., learning combined with evolution, as 
described above. 

The results are illustrated by Fig. 2, where the agent 
resource values attained during 200 time steps for these 
three cases of adaptation are shown. For the cases E and 
LE, we record the maximal value of agent resource in a 
population Rmax(ng) at the end of each generation ng . For 
the case L, we have just one agent whose resource is 
reset R(T(ng–1)+1) = 0 after the passing of every T  = 200 
time steps; the index ng is also incremented by one after 
every T time steps. In order to exclude the decrease of the 
value Rmax(ng) due to the random choice of actions when 
applying the ε-greedy rule for the cases LE and L, we set 
ε = 0 after ng = 100 for the case LE and after ng = 2000 
for the case L. 

Analysis of agent actions demonstrates that both cases 
E and LE ensure the finding of optimal policy, i.e. the 
agent buys/sells stocks at prediction of stock price 
rises/falls (see the curves E and LE in Fig. 2). The pure 
learning is able to find only the satisfactory policy (see 
the curve L in Fig. 2), namely, the agent buys stock when 
stock price rises (or falls by a small amount) and sells 
stocks when stock price falls significantly. 

Thus, pure learning is imperfect in our simulation, 
nevertheless, learning helps evolution to attain larger 
values of Rmax faster (see curves E and LE in Fig. 2). We 
also confirm that learning helps evolution to find a good 
policy by some other simulations. For example, Fig. 3 
demonstrates that during initial stages of evolution (ng = 
1-2) a satisfactory policy is found via learning (only after 
200-300 time steps of the agent life). But at 5-th 
generation, the agents exhibit a satisfactory policy from 
the beginning of the generation. This phenomenon is 
known as the Baldwin effect [14, 15], i.e., initially 
acquired features become inhered. 
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Fig. 2. The plots of Rmax(ng) for the sinusoidal time series. The 
curves LE, E and L correspond to the cases of learning 
combined with evolution, pure evolution and pure learning, 
respectively. Results are averaged over 1000 simulations. 

E. Discussion of simulation results  
Thus, the behavior of simulated agents is interesting; 

in particular, nontrivial genetic assimilation of acquired 
features in Darwinian evolution takes place (Fig. 3). 
However, the agent cognitive abilities are small; learning 
processes are slow; so new versions of Animat Brain 
architectures should be analyzed. We continue the 
development of these architectures. In particular, we 
designed the control system architectures of animats that 
live in cellular world and began computer simulations of 
these animats. 

V. SKETCH PROGRAM FOR FURTHER RESEARCH  

Returning to modeling cognitive evolution, let us 
propose a sketch program for further researches. 

1) Modeling of adaptive behavior on the base of the 
project “Animat Brain”.  

Such modeling can include simulation of simple 
cognitive features of animats that have natural needs: 
food, reproduction, safety. 
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Fig. 3. The plots of Rmax(t) for the sinusoidal time series. The 
case LE, T = 1000. The ends of the generations are shown by 
vertical lines. At first two generations a satisfactory policy is 
found via learning. At 5-th generation the newborn agent 
“knows” a good police from the moment of its birth. 



2) Investigation of the transition from the physical 
level of information processing in nervous system of 
animals to the level of the generalized “notions”. 

Such transition can be considered as emergence of the 
property “notion” in animal minds. The generalized 
“notions” are mental analogues of our words, which are 
not said by animals, but really used by them. Using 
notions, animals are able to have short descriptions of 
interactions with external environment. 

 3) Investigations of processes of generating causal 
relations in animal memory. 

Storing relationships between the cause and the effect 
and adequate use of these relationships is one of key 
properties of active cognition of the external world 
regularities (“laws of nature”) by animals. For example, 
such relationships are generated at the conditional reflex: 
the animal remembers the temporal relation between the 
conditional stimulus (CS) and the unconditional stimulus 
(US). This allows it to predict events in the external 
world and adequately use these predictions. 

Natural next step is the transition from memorizing 
separate causal relations to systems of logic conclusions. 

4) Investigations of logic conclusions in animal minds. 
Actually, at classical conditioning, the animals do a 

“logic conclusion”: {CS, CS -> US} => US or “If the 
conditional stimulus takes place, and the conditional 
stimulus is followed by the unconditional one, then the 
occurrence of the unconditional stimulus is expected”. 
We can even state that such conclusions are similar to 
logical conclusions of mathematicians proving the 
theorems. It is important to understand, what are systems 
of these conclusions, to what extent the “animal logic” is 
similar to our, human logic. 

The listed items outline steps of investigations from 
simplest forms of animal behavior to logical rules that 
are used at proofs of mathematical theorems. It should be 
noted that certain researches on these topics are 
conducted already; however, a sequence of serious 
canonical models is absent yet. 

VI. CONCLUSION 

Thus, approaches to modeling cognitive evolution 
have been discussed. This modeling is related with 
foundation of science and with scientific cognition. The 
initial steps towards modeling cognitive evolution have 
been already done in the research area “Simulation of 
Adaptive Behavior”. Certain cognitive features can be 
modeled in the framework of the project “Animat Brain”. 
Some researches on this project have been outlined in the 
current work. The sketch program for further modeling 
cognitive evolution has been proposed. The program 
describes reasonable research steps from simple animal 
cognitive abilities to mathematical deductions. 
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