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The set of the fixed points of the Hopfield type network is under investigation. The connection
matrix of the network is constructed according to the Hebb rule from the set of memorized patterns
which are treated as distorted copies of the standard-vector. It is found that the dependence of the
set of the fixed points on the value of the distortion parameter can be described analytically. The
obtained results are interpreted in the terms of neural networks and the Ising model.

PACS numbers: 07.05.Mh, 75.10.Hk, 89.70.+c

I. INTRODUCTION

The problem of maximization of a symmetric form

{
F (~σ) =

∑n
i,j=1 Jijσiσj → max, σi = {±1},

~σ = (σ1, . . . , σn), Jij = Jji, i, j = 1, 2, . . . , n,
(1)

which is quadratic in spin variables σi, is under investigation. This problem arises in the Ising model, in the surface
physics, in the theory of optimal coding, in factor analysis, in the theory of neural networks and in the optimization
problems1–7. The aim is to obtain an effective method for the search of the global maximum of the functional and a
constructive description of the set of its local maxima.

The solution of the problem (1) is sought among the n-dimensional vectors ~σ. These vectors define 2n configurations;
in what follows they are called the configuration vectors. The configuration vector which gives the solution of the
problem (1) is called the ground state.

Let’s settle with the choice of the diagonal elements of the matrix J = (Jij)
n
i,j=1. Since for any configuration vector

the diagonal gives the same contribution to the value of the functional, the local maxima of the functional do not
depend on Jii. Consequently, Jii can be chosen in an arbitrary suitable form. In the same time, the set of the local
maxima of the functional F is the same as the set of the fixed points of a neural network whose connection matrix
differs from J only by zero diagonal elements1. In what follows, we call J the connection matrix irrespective of its
diagonal. And with regard to neural networks we have in mind that its diagonal elements are equal zero.

Without the loss of generality J can be considered as a positive semidefinite matrix. (It always can be achieved by
a suitable choice of its diagonal elements.) Then the matrix J can be presented as a product

J = ST · S, (2)

where S is a (p × n)-matrix with real matrix elements. The number of its rows is equal to the rank of the matrix J

and it does not exceed n− 1:

p = rank J ≤ n− 1.

The representation (2) for the connection matrix plays an important role in the theory of neural networks. If all the
elements of the matrix S are equal {±1}, the connection matrix is called the Hebb matrix and the related neural
network is called the Hopfield network. Of course, in general case when according to Eq. (2) the matrix S is obtained
from an arbitrary symmetric matrix J, not necessarily all the elements of S are equal {±1}. By analogy with the
Hopfield model, in this case Eq.(2) is called the Hebb type representation and the related neural network is called the
Hopfield type network. Summarizing, we can say that the local maxima of the problem (1) are the fixed points of a
Hopfield type network.

1For details see8.
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We investigate the problem (1) in the case of the connection matrix constructed with regard to the Hebb-like rule
(2) from the (p× n)-matrix S of the form

S =








1− x 1 . . . 1 1 . . . 1
1 1− x . . . 1 1 . . . 1
...

...
. . .

...
... . . .

...
1 1 . . . 1− x 1 . . . 1








, (3.a)

where x is an arbitrary real number. The connection matrix J has the form:

J = ST·S =














p− 2x + x2 p− 2x . . . p− 2x p− x . . . p− x
p− 2x p− 2x + x2 . . . p− 2x p− x . . . p− x

...
...

. . .
...

...
...

...
p− 2x p− 2x . . . p− 2x + x2 p− x . . . p− x
p− x p− x . . . p− x p . . . p

...
...

...
...

...
. . .

...
p− x p− x . . . p− x p . . . p














. (3.b)

According to the conventional neural network tradition, we treat the n-dimensional vectors ~s(l), which are the rows of
the matrix S, as p generalized memorized patterns embedded in the network memory. Then the following meaningful
interpretation of the problem can be suggested: the network had to be learned by p-time showing of the standard

~ε(n) = (1, 1, . . . , 1),

but an error crept into the learning process and in fact the network was learned with the help of p distorted copies ~s(l)

of the standard ~ε(n):

~s(l) = (1, . . . , 1, 1− x
︸ ︷︷ ︸

l

, 1, . . . , 1), l = 1, 2, . . . , p. (4)

The problem (1)-(3) will be called the basic model. In what follows we present its generalization.
When x is equal zero, the network is found to be learned by p copies of the standard ~ε(n). It is well-known that

in this case the vector ~ε(n) itself is the ground state and the functional has no other local maxima. For continuity
reasons, it is clear that the same is true for a sufficiently small distortion x. But when x increases the ground state
changes. For the problem (1)-(3) we succeeded in obtaining the analytical description of the dependence of the ground
state on the value of the distortion parameter.

In II the main mathematical results are presented; in III we give the interpretation of the obtained results in terms of
the neural network and the Ising model. Some proofs which are not significant for the understanding of the structure
of the solution enter Appendix.

We would like to mention that our approach is very close to the problem of generalization in neural networks9–11.
Under the classical setting of the problem, one is investigating the network ability to reconstruct the set of memorized
patterns if during the learning their distorted copies have been used. In contrast to the classical setting, in our case
the distortions are deterministic ones. Moreover, the value of the distortion x is the same for all the memorized
patterns and only one coordinate is distorted every time. In II it is shown that some of these restrictions can be
omitted. However, the most important restriction of our approach is investigation of the generalization in the case of
one memorized pattern only, but not the set of memorized patterns. Nevertheless, the meaningful interpretation of
the obtained results (see III) is of interest for the more general case.

Notations. We denote by ~ε(k) the configuration vector which is collinear to the bisectrix of the principle orthant
of the space Rk. The vector, which after p distortions generates the set of the memorized patterns ~s(l), is called the
standard-vector or the standard. Next, n is the number of the spin variables, p is the number of the memorized patterns
and q = n− p is the number of the nondistorted coordinates of the standard. Configuration vectors are denoted by
small Greek letters. We use small Latin letters to denote vectors whose coordinates are real. The n-dimensional vectors
are numerated by superscripts enclosed in brackets and their coordinates are numerated by subscripts. Matrices are
denoted by half-bold capital Latin letters.

II. MATHEMATICAL RESULTS

Let us look for the local maxima among configuration vectors whose last coordinate is positive.
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A. Basic Model

Since q last columns of the matrix S are the same, the configuration vector which is ”under the suspicion” to provide
an extremum is of the form2

~σ∗ = (σ1, σ2, . . . , σp
︸ ︷︷ ︸

~σ′

, 1, . . . , 1
︸ ︷︷ ︸

q

), (5)

where we denote by ~σ′ the p-dimensional part of the vector ~σ∗, which is formed by its first p coordinates. The direct
calculations (or see13) show that

F (~σ∗) ∝ x2 − 2x(q + p cosw) cos w + (q + p cosw)2, (6)

where

cosw =

∑p
i=1 σi

p
=

(~σ′, ~ε(p))

‖ ~σ′ ‖ · ‖ ~ε(p) ‖
(7)

is the cosine of the angle between p-dimensional vectors ~σ′ and ~ε(p). Depending on the number of the negative
coordinates of the vector ~σ′, cosw takes the values

coswk = 1−
2k

p
, k = 0, 1, . . . , p.

Consequently, 2p ”suspicious-looking” vectors ~σ∗ are grouped into the p + 1 classes Σk and the functional F (~σ∗) has
the same value Fk for all the vectors from the same class:

F (~σ∗) ≡ Fk ∀~σ∗ ∈ Σk.

The classes Σk are numerated by the number k of the negative coordinates which have the relevant vectors ~σ∗. The
number of the vectors in the class Σk is equal to (p

k).
To find the ground state under a given value of x, it is necessary to determine the greatest of the values

F0(x), F1(x), . . . , Fp(x). Under the comparison the common term x2 can be omitted. Therefore, to find out how
the ground state depends on the parameter x, it is necessary to examine the family of the straight lines

Lk(x) = (q + p coswk)2 − 2x(q + p coswk) coswk. (8)

In the region where the Lk(x) majorizes all the other straight lines, the ground state belongs to the class Σk and is
(p
k)-times degenerate. The analysis of the relative position of the straight lines Lk(x) is given in Appendix and leads

to the following
Theorem. As x varies from −∞ to ∞ the ground state in consecutive order belongs to the classes

Σ0, Σ1, . . . , Σkmax
.

The rebuilding of the ground state from the class Σk−1 into the class Σk occurs at the point xk of intersection of the
straight lines Lk−1(x) and Lk(x):

xk =
p

2

(

1 +
q

q + p(coswk−1 + coswk)

)

= p ·
n− (2k − 1)

n + p− 2(2k − 1)
, k = 1, 2, . . . , kmax. (9)

If p−1
n−1 < 1

3 , one after another all the p rebuildings of the ground state take place according to the above scheme:

kmax = p. And if p−1
n−1 > 1

3 , the last rebuilding is the one with the number kmax =
[

n+p+2
4

]
. The functional has no

other local maxima.
The Theorem allows to solve a lot of practical problems. For example, let n and p be fixed. Then, for any preassigned

x it is sufficient to know between which xk and xk+1 it finds itself to determine which of the classes Σk provide the
global maximum of the functional F (~σ), what is its value and the degeneration of the ground state. On the contrary,
for the fixed x, it is possible to find out such n and p for which the ground state belongs to the preassigned class Σk,
etc.

2For details see12.
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FIG. 1. The typical behavior of the straight lines Lk(x), k = 0, 1, . . . , p. The rebuildings of the ground state occurs at
the points xk of the intersection of the straight lines Lk−1 and Lk. Inside the interval (xk, xk+1) the ground state belongs to
the class Σk. When x increases: a). all the rebuildings of the ground state occur (kmax = 5), because p−1

n−1
< 1

3
; b). only

kmax =
[

n+p+2
4

]
= 3 rebuildings of the ground state occur, because p−1

n−1
> 1

3
.

The points xk (9), where the rebuildings of the ground state take place will be called the rebuilding points.
In Fig.1 the typical examples of the relative position of the straight lines Lk(x) are presented for the cases p−1

n−1 < 1
3

(a) and p−1
n−1 > 1

3 (b). When x changes from −∞ to x1, the ground state is the standard-vector ~ε(n) (it exhausts the

class Σ0). In the point x1 the ground state rebuilds from the class Σ0 to the class Σ1 and becomes p-times degenerate.
When x achieves the value x2, the ground state rebuilds from the class Σ1 to the class Σ2 and becomes

(
p
2

)
-times

degenerate, and so on. As x increases, at first the value of the functional for the ground state monotonically decreases
and then, after reaching the minimum value, increases monotonically. For what follows let us note that if p < n− 1,
then kmax ≥ [p+1

2 ] and xkmax
≥ p.

The case p = n worth to be specially mentioned. Here all the rebuilding points xk stick to one point

x′ ≡ xk =
n

2
, k = 1, 2, 3, . . . ,

[
n + 1

2

]

. (10)

For any x from the left of x′ the ground state is the standard-vector ~ε(n), and for x from the right of x′ the ground
state belongs to the class Σ[ n+1

2
] and is

(
n

[ n+1

2
]

)
-times degenerate.

The interval x1 < x < xkmax
will be called the rebuilding region of the ground state. This region is examined in

details in Appendix. Here we would like to mention only, that its left boundary x1 ≥
p
2 and it is the monotonically

increasing function of p as well as of n. And also, when p = const and n→∞ the rebuilding region contracts to the
point

x′′ = p. (11)

In this case for x < x′′ the ground state is the standard-vector and for x > x′′ the ground state belongs to the class
Σp; again it is a nondegenerate one.

B. Generalization of the Basic Model

Let’s examine some generalizations of the basic model, which seem to be the most important. From our point of
view they significantly widen the class of possible connection matrices for which the effective solution of the problem
(1) can be obtained.
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1. An arbitrary cofiguration standard-vector

An arbitrary configuration vector

~α = (α1, . . . , αp, αp+1, . . . , αn)

can be used in place of the standard ~ε(n), and its p distorted copies of the type (4) can be used as memorized patterns.
These changes affect the elements of the connection matrix:

J
(α)
ij = Jijαiαj , i, j = 1, 2, . . . , n. (12)

If we introduce a diagonal (n× n)-matrix

A = diag (α1, . . . , αp, αp+1 . . . , αn),

then J(α) = A · J ·A and the functional we have to maximize, takes the form:

F (α) = (J(α)~σ, ~σ) = (J ·A~σ,A~σ) = (J~ξ, ~ξ) = F (~ξ).

Here ~ξ = A~σ, and the functional F (~ξ) has been examined above. Consequently, all the results of the basic model
remain correct, though here they are relative to configuration vectors

~σ∗ = (α1σ1, α2σ2, . . . , αpσp, αp+1, . . . , αn).

Thus, ~ε(n) can be used as the standard-vector without the loss of generality.

2. Rotation of the memorized patterns

An interesting generalization of the basic model is obtained when the memorized patterns (4) are subjected to
rotation as a whole. Let the nontrivial part of the rotation matrix U = (uij) has the dimension p × p. It acts on
the first p coordinates of n-dimensional vectors transforming the distorted part of the standard into a p-dimensional
vector ~u:

~u = U · ~ε(p) =








u1

u2

...
up








, ul =

p
∑

i=1

uli, l = 1, 2, . . . , p, ‖ ~u ‖2= p. (13)

As a result of the rotation the l-th memorized pattern takes the form

(u1 − xu1l, u2 − xu2l, . . . , up − xupl, 1, . . . , 1), (14)

and it is convenient to choose the elements of the relevant connection matrix J(U) in the form

J
(U)
ij = Jijuiuj , i, j = 1, 2, . . . , n. (15)

From Eqs. (14), (15) it directly follows that if the standard-vector ~ε(n) is not changed as a result of the rotation (in
other words, if u1 = u2 = . . . = up = 1) then the connection matrix J(U) coincides with the matrix J. Consequently,
all the results of the basic model are valid, though in this case the memorized patterns (14) are obtained from ~ε(n)
by simultaneous (!) distortion of its p coordinates.

But if the rotation results in ul which are not all equal unity, the standard-vector shifts. Then it is convenient to
introduce a diagonal (n× n)-matrix

D = (u1, u2, . . . , up, 1, . . . , 1)

and present the connection matrix J(U) as a triple product J(U) = D · J ·D. By analogy with the above reasonings
it is easy to show that again only the configuration vectors ~σ∗ (5) are ”under the suspicion” to provide an extremum

5



of the functional F (U)(~σ) = (J(U)~σ, ~σ). Again the value of the functional F (U)(~σ∗) is given by Eq.(6), but cosw has
to be calculated with the help of other equation:

cosw =

∑p
i=1 σi · ui

p
=

(~σ′, ~u)

‖ ~σ′ ‖ · ‖ ~u ‖
(16)

(compare with Eq.(7)). Thus, the value of the functional F (U)(~σ∗) is completely defined by the distortion x and the
value of the cosine of the angle between ~σ′ and ~u. Consequently, again the vectors ~σ∗ are grouped in the classes

Σ
(U)
k , inside which the value of the functional F (U)(~σ∗) is constant. The vectors ~σ∗ belong to the same class if their

p-dimensional parts are equidistant from the vector ~u. The number of the classes Σ
(U)
k is equal to the number of the

different values of cosw (16).
Thus, it is necessary to put in order 2p vectors ~σ′ with regard to their proximity to the vector ~u. This problem will

be discussed in another publication. But now let us assume that the desired ordering has been done and a decreasing
sequence of the values of cosw (16) has been obtained:

cosw0 > cosw1 > . . . > coswt. (17)

Here the number of the classes Σ
(U)
k is equal to t + 1. We denote by vk the number of the vectors ~σ∗ in the k-th class:

v0 + v1 + . . . + vt = 2p.

Since the half of the vectors ~σ′ can be obtained from the other half of the full set of these vectors by changing signs
of all their coordinates, for every k we have obvious equalities:

coswk = − coswt−k, vk = vt−k.

Therefore, coswk is negative beginning from some number k.
We see that as above to determine the dependence of the ground state on the parameter x, it is necessary to examine

the family of the straight lines Lk(x) (8) where the cosines are calculated according to Eq.(16). The analysis of the
placement of the straight lines gives the result which generalizes the Theorem (the proof is given in Appendix):
As x varies from −∞ to ∞ the ground state in consecutive order belongs to the classes

Σ
(U)
0 , Σ

(U)
1 , . . . , Σ

(U)
kmax

.

The rebuilding of the ground state from the class Σ
(U)
k−1 into the class Σ

(U)
k occurs at the point xk of intersection of the

straight lines Lk−1(x) and Lk(x):

xk =
p

2

(

1 +
q

q + p(coswk−1 + coswk)

)

, k = 1, 2, . . . , kmax, (18)

where coswk belong to the ordered sequence (17). If x1 > 3
4p, one after another all the t rebuildings of the ground

state take place according to the above scheme: kmax = t. And if x1 < 3
4p, the rebuildings of the ground state come to

an end when the denominator in Eq.(18) becomes negative.

Note 1. When the distortion x belongs to the interval (xk, xk+1), all the configuration vectors from the class Σ
(U)
k

are the local maxima of the functional F (U)(x). At the same time the set of these vectors is the set of the fixed points
of the Hopfield type network whose connection matrix is J(U) (we remind that its diagonal elements are equal zero).

But the composition of each of the classes Σ
(U)
k is determined by the values of {ul}

p
l=1 (13) only. And the choice of

{ul}
p
l=1 is completely in the researcher’s hand. In other words, selecting {ul}

p
l=1 and the distortion parameter x, the

Hopfield type network with a preassigned set of fixed points can be created.
Let’s explain this statement with the help of a simple example. Let’s create the network with the only fixed points

~α = ( −1, −1, −1, 1, 1, 1, 1, . . . , 1 )
~β = ( 1, 1, 1, −1, −1, 1, 1, . . . , 1 )
~γ = ( 1, 1, 1, 1, 1, −1, 1, . . . , 1 ).

Then it is necessary, firstly, to group these vectors into one class Σ
(U)
k , and, secondly, to choose such distortion x

which provides the belonging of the ground state to this class. The first step can be easily done, if with the help of a
rotation of the memorized patterns the standard ~ε(n) transforms into the vector

~u = (u1, u1, u1,
3u1

2
,
3u1

2
, 3u1, u7, . . . , up), 0 < u1 <

3u1

2
< 3u1 < u7 < . . . < up.
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Indeed, it is evident that in this case the first six values of the cosines (16) and the relevant classes Σ
(U)
k are:

cosw0 =
9u1+

∑
p

i=7
ui

p
, Σ

(U)
0 = ~ε(n) = ( 1, 1, 1, 1, 1, 1, 1, . . . , 1 )

cosw1 = cosw0 − 2 · u1

p
, Σ

(U)
1 =







( −1, 1, 1, 1, 1, 1, 1, . . . , 1 )
( 1, −1, 1, 1, 1, 1, 1, . . . , 1 )
( 1, 1, −1, 1, 1, 1, 1, . . . , 1 )

cosw2 = cosw0 − 3 · u1

p
, Σ

(U)
2 =

{
( 1, 1, 1, −1, 1, 1, 1, . . . , 1 )
( 1, 1, 1, 1, −1, 1, 1, . . . , 1 )

cosw3 = cosw0 − 4 · u1

p
, Σ

(U)
3 =







( −1, −1, 1, 1, 1, 1, 1, . . . , 1 )
( 1, −1, −1, 1, 1, 1, 1, . . . , 1 )
( −1, 1, −1, 1, 1, 1, 1, . . . , 1 )

cosw4 = cosw0 − 5 · u1

p
, Σ

(U)
4 =







( −1, 1, 1, −1, 1, 1, 1, . . . , 1 )
( −1, 1, 1, 1, −1, 1, 1, . . . , 1 )
( 1, −1, 1, −1, 1, 1, 1, . . . , 1 )
( 1, −1, 1, 1, −1, 1, 1, . . . , 1 )
( 1, 1, −1, −1, 1, 1, 1, . . . , 1 )
( 1, 1, −1, 1, −1, 1, 1, . . . , 1 )

cosw5 = cosw0 − 6 · u1

p
, Σ

(U)
5 =







( −1, −1, −1, 1, 1, 1, 1, . . . , 1 )
( 1, 1, 1, −1, −1, 1, 1, . . . , 1 )
( 1, 1, 1, 1, 1, −1, 1, . . . , 1 )

Thus, the class Σ
(U)
5 consists of the given configuration vectors ~α, ~β and ~γ exactly. Cosequently, if the distortion

parameter x is chosen inside the interval (x5, x6), where xk are defined by Eq.(18), the relevant network of the
Hopfield type has the preassigned set of the fixed points.

We would like to mention that an additional analysis is required to find out the limits of our method for the
construction of networks with a preassigned set of the fixed points.

3. Different distortions of the memorized patterns

The distortions xl can differ for every of the memorized patterns (4):

~s(l) = (1, . . . , 1, 1− xl
︸ ︷︷ ︸

l

, 1, . . . , 1), l = 1, 2, . . . , p.

With the help of the reasoning the same as in II A, it is easy to show that as above only the configuration vectors ~σ∗

(5) are important. And the value of the functional F (~σ∗) is

F (~σ∗) =

p
∑

l=1

x2
l − 2(q + p cosw)

p
∑

l=1

σlxl + p(q + p cosw)2,

where again cosw is given by Eq.(7). Under the comparison we have to omit the term
∑p

l=1 x2
l . Now we obtain that

to determine the ground state dependence on the set of the distortions {xl}
p
1, it is necessary to examine the family of

the linear functions

L(~σ∗, {xl}
p
1) = (q + p cosw)2 −

2(q + p cosw)

p

p
∑

l=1

σlxl. (19)

For this analysis one can try to use a probabilistic approach, considering xl as independent realizations of a stochastic
variable, which, let us say, is Gaussianly distributed. This way brings us nearer to the classical problem of the network
ability to generalization (see Introduction). We have not investigate this approach.

On the other hand, we can remain in the framework of the geometric approach, which is rather fruitful for this
problem. Let’s show this. Without loss of generality we assume that the distortions xl are arranged in increasing
order. And for simplicity we assume them to be positive. Then,

0 < x1 < x2 < . . . < xp. (20)

7



As in II A we have

coswk = 1−
2k

p
⇒ q + p coswk = n− 2k, k = 0, 1, . . . , p,

and the family of the functions (19) decomposes into p + 1 subfamilies Lk(~σ∗, {xl}
p
1). Here the subscript k indicates

that the relevant configuration vector ~σ∗ belongs to the class Σk:

Lk(~σ∗, {xl}
p
1) = (n− 2k)2 −

2(n− 2k)

p

p
∑

l=1

σlxl, ~σ∗ ∈ Σk, k = 0, 1, . . . , p. (21)

The decomposition of the family of the functions (19) into p + 1 subfamilies (21) allows to find easily the ground
state for a given set of the distortions {xl}

p
1. Indeed, to determine the ground state we have, firstly, to find the vector

~σ∗(k) inside every class Σk, which provides maximum L∗

k of the function Lk(~σ∗, {xl}
p
1):

L∗

k = Lk(~σ∗(k), {xl}
p
1) ≥ Lk(~σ∗, {xl}

p
1) ∀~σ∗ ∈ Σk, k = 0, 1, . . . , p.

And, secondly, we have to determine the greatest among p + 1 values L∗

k. The last can be done easily, and the
determination of the vectors ~σ∗(k) does not require additional calculations at all: if n− 2k > 0, we have to minimize
the factor

∑p
l=1 σlxl (see Eq.(21)); if n − 2k < 0 the same factor has to be maximized. From inequalities (20) it is

evident that the factor is minimal at the vector

~σ∗(k) = (

p
︷ ︸︸ ︷

1, 1 . . . , 1,−1,−1, . . . ,−1
︸ ︷︷ ︸

k

, 1, 1, . . . , 1),

and it is maximal at the vector

~σ∗(k) = (

p
︷ ︸︸ ︷

−1,−1 . . . ,−1
︸ ︷︷ ︸

k

, 1, 1, . . . , 1, 1, 1, . . . , 1).

Thus, when the distortions xl are different, the geometric approach allows to determine the ground state very quickly
and efficiently. It seems, that the potentiality of the geometric approach does not exhausted by the mentioned
examples.

Note 2. We denote by x̄ the average over all the distortions

x̄ =

∑p
l=1 xl

p
.

We write the distortions xl in the form:

xl = x̄ + dl, l = 1, . . . , p,

where dl = xl − x̄ is the deviation of the l-th distortion from the mean value x̄. Now Eq.(19) can be rewritten as

L(~σ∗, {xl}
p
1) = (q + p cosw)2 − 2x̄(q + p cosw) cos w −

2(q + p cosw)

p

p
∑

l=1

σldl. (22)

Let’s discuss the case of slightly different distortions. That is, the deviations of all the distortions from the mean
value x̄ are sufficiently small:

| dl |<< 1, l = 1, . . . , p.

Then it is clear that the first two terms give the main contribution in Eq.(22). We would like to remind that just these
two terms were analyzed in II A (see Eq.(8)). Consequently, in the zeroth approximation we have, that if x̄ is inside
the interval [xk, xk+1] (xk are defined by Eqs.(9)), the ground state belongs to the class Σk, and the global maximum
of the functional is

(
p
k

)
-times degenerate. What will happen when the third term in Eq.(22) is taken into account? It

can be expected that for sufficiently small dl, this term does not lead the ground state out of the class Σk, but only
lifts of the ground state degeneracy. Numerical experiments confirm this assumption: when all dl are not very great
and x̄ ∈ (xk, xk+1), all the local maxima of the functional (1) belong to the class Σk, the values of the functional at
vectors ~σ∗ ∈ Σk differ slightly and one (or several) of these vectors provide(s) the global maximum of the functional.
Thus, we explain one of the possible reasons, why the functional (1) has a lot of slightly different local maxima. One
frequently faces such situation in the neural network theory, Ising model and the optimization problems.
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4. Other generalizations of the basic model

Without dwelling on the details, we would like to mention other possible generalizations of the basic model3.

1◦. The normalized memorized patterns.

The memorized patterns (4) can be normalized to unit to prevent their length being dependent on the varying
parameter x. It is easy to see, that in this case all the reasonings, which lead to the Theorem, are valid. It can be
shown that here the maximum value of the functional for the ground state decreases monotonically as function of x.

2◦. The identical distortion of a group of coordinates of the standard.

Let m coordinates of the standard ~ε(n) be distorted simultaneously and identically. Then (p × n)-matrix of the
memorized patterns has the form

S(m) =








1− x . . . 1− x 1 . . . 1 . . . 1 . . . 1 1 . . . 1
1 . . . 1 1− x . . . 1− x . . . 1 . . . 1 1 . . . 1
...

m
←→

...
...

m
←→

... · · ·
...

m
←→

...
...

q
←→

...
1 . . . 1 1 . . . 1 . . . 1− x . . . 1− x 1 . . . 1








.

Of course, now n = p×m + q. Let’s note that the nondiagonal elements of the relevant connection matrix J(m) have
the terms, which are quadratic in distortions.

With regard to the arguments of II A, it is not difficult to show that the maximum of the functional F (m) =
(J(m) · ~σ, ~σ) is achieved only at ”piecewise constant” configuration vectors

~σ∗ = (σ1, . . . , σ1
︸ ︷︷ ︸

m

, σ2, . . . , σ2
︸ ︷︷ ︸

m

, . . . , σp, . . . , σp
︸ ︷︷ ︸

m

, 1, . . . , 1
︸ ︷︷ ︸

q

).

The form of these vectors is dictated by the memorized patterns matrix S(m). The value of the functional F (m) at
the vectors ~σ∗ is

F (m)(~σ∗) ∝ x2 − 2x cosw
( q

m
+ p cosw

)

+
( q

m
+ p cosw

)2

,

where w is the angle between the p-dimensional vectors ~σ′ = (σ1, σ2, . . . , σp) and ~ε(p), and cosw is given by Eq.(7).

As above, 2p vectors ~σ∗ are distributed among the classes Σ
(m)
k at which the value of the functional F (m) is constant:

F (m)(~σ∗) = F
(m)
k ∀~σ∗ ∈ Σ

(m)
k , k = 0, 1, . . . , p.

The structure of the classes Σ
(m)
k is much alike the structure of the classes Σk from II A. The only difference is that

here the value −1 have not one of the coordinates σl of the vector ~σ∗, but a whole group of m such coordinates.

Again, as above, the number of the vectors ~σ∗ in the class Σ
(m)
k is equal to

(
p
k

)
. The same reasoning as in II A leads

to the generalization of the Theorem:

The rebuildings of the ground state from the class Σ
(m)
k−1 into the class Σ

(m)
k occur at the points x

(m)
k

x
(m)
k =

p

2

[

1 +
q

q + mp(coswk−1 + coswk)

]

= p ·
n
m
− (2k − 1)

n
m

+ p− 2(2k − 1)
, k = 1, . . . , kmax.

If p < q
2m

+ 1, one after another all the p rebuildings of the ground state take place according to the above scheme:

kmax = p. And if p > q
2m

+ 1, the last rebuilding is the one whose number is kmax =
[

n
m

+p+2

4

]

. The functional has

no other local maxima.
For what follows we would like to note, that when m increases the rebuilding points x

(m)
k with k < p+1

2 move to

the left, and the rebuilding points x
(m)
k with k > p+1

2 move to the right. If p is an odd number, necessarily there is

the rebuilding point with the number k = p+1
2 : x p+1

2

= p. When m increases this point does not move.

3See also Note 3 of IIIB.
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III. DISCUSSION AND INTERPRETATIONS

Let us discuss the results which mainly refer to the basic model.

A. Neural networks

In connection with neural networks the Theorem has to be interpreted in the framework of the meaningful setting
of the problem, which has been given in Introduction. Then the Theorem means: The quality of ”the truth” (i.e.,
the standard ~ε(n)) which is understood by the network depends on the distortion value x during the learning stage
and on the length p of the learning sequence. We would like to point out some important details of the suggested
interpretation.

1◦. In agreement with the common sense the error of the network increases with the increase of the distortion x:
when x belongs to the interval (xk, xk+1), ”the truth” which is understood by the network (the class Σk) differs from
the standard ~ε(n) by k coordinates.

Also it is quite reasonable that the left boundary of the rebuilding region x1 is the increasing function of p and
n. Indeed, when n and x are fixed, merely due to increase of the number of the memorized patterns p the value of
x1 can be forced to exceed x (of course, if x is not too large). As a result x turns out to be on the left of x1, i.e.
in the region where the only fixed point is the standard ~ε(n). In other words, only by an increase of the length p of
the learning sequence, one can attain that the network understands correctly ”the truth” it is tried to be learned.
This conclusion is in agreement with the practical experience according which the greater the length of the learning
sequence, the better the signal can be read through noise. From this point of view the most reliable network of the
considered type is the one with p = n: for any distortions x < x′ = n

2 it steadily reproduces the standard-vector (see
the comment to Eq.(10)).

In the same way when p and x are fixed, merely due to an increase of the number n the value of x1 can be forced
to exceed x. This result is reasonable too: when p is fixed and the number n increases, the relative number p/n of
the distorted coordinates of the standard-vector decreases. Naturally, the less the relative weight of the distortion,
the better must be the result of the learning.

2◦. Under an increase of the distortion parameter not only the error of the network increase, but also the number
of ”noncorrect truths” which are understood by the network: when x ∈ (xk, xk+1) the number of the network fixed
points is

(
p
k

)
. Such multiple degeneracy of the ”truth” is in agreement with the common idea that in general there is

only one ”real truth”, but the number of the ”noncorrect truths” is large. And also, the greater is the distortions at
the learning stage, the more can be the number of ”noncorrect truths”.

However, when x becomes greater than x p+1

2

= p, the number of ”noncorrect truths” decreases. And this number

decreases monotonically under the further increase of the distortion parameter. Moreover, according to the Theorem,
when p−1

n−1 < 1
3 , for all x whose values exceed the right boundary of the rebuilding region, the ground state belongs to

the class Σp. And, in spite of the very great distortion, the ground state is a nondegenerate one! In other words, the
number of ”noncorrect truths” is a nonmonotone function of the distortion x.

This result seems to be a paradox. This paradox can be explained when it is related to the well-known feature
of our perception: we interpret deviations in the image of a standard as permissible ones only till some threshold.
If only this threshold is exceeded, the distorted patterns are interpreted as quite different standard. The Hopfield
network under consideration demonstrate just the same behavior with x p+1

2

= p being the boundary of the permissible

distortions of the standard. Let’s prove the last statement.
Here the notation for the standard ~ε(n) differs from the one used above, and it is

~ε(+) = (1, 1, . . . , 1
︸ ︷︷ ︸

p

, 1, . . . , 1). (23)

We also introduce another standard:

~ε(−) = (−1,−1, . . . ,−1
︸ ︷︷ ︸

p

, 1, . . . , 1). (24)

In their not coincident parts the standards ~ε(+) and ~ε(−) are opposed with each other, i.e. they are two opposite
statements. Any of the network fixed points ~σ∗ (5) is an intermediate statement between ~ε(+) and ~ε(−), which is
drawn towards either one edge of the scale (~ε(+)), or the other (~ε(−)).
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Which distortions of the standard ~ε(+) have to be assumed as permissible? Evidently, those for which the result of
the learning resembles the standard ~ε(+) more, than its opposition ~ε(−). This is, the fixed points ~σ∗ have to differ from
the standard ~ε(+) not more than by p

2 first coordinates: ~σ∗ ∈ Σk, k ≤ p
2 . And this takes place only if x < x p+1

2

= p.

But if x > p, the fixed points σ∗ belong to the class Σk with k > p
2 , and they more resemble the standard ~ε(−), than

~ε(+).
Let’s point out the following curious circumstance. Let not the one, but a whole group m of the coordinates of

the standard ~ε(+) be distorted. Then the rebuilding points x
(m)
k with the numbers k < p+1

2 move to the left when m
increases (see the last paragraph of item 2◦ in II B 4). And this is clear: now the total distortion of the standard is
m-times enlarged and the network earlier ceases to extract the standard from the memorized patterns. It is somewhat

unexpected that the boundary x
(m)
p+1

2

= p of the permissible distortions of the standard does not depend on m. It might

appear that when the total distortion is m-times enlarged, the boundary of the permissible distortions is reached m-
times quicker. However, this is not the case. Apparently, the reason is nonadditivity of the influence of the distortion
x on the result of the learning. Out of the simultaneous distortion of m coordinates of the standard, it does not follow

at all that x
(m)
k becomes m-times less than xk. When m increases, the rebuilding point x

(m)
1 undergoes the most shift

to the left. The shift of x
(m)
2 is somewhat smaller, the shift of x

(m)
3 is still smaller, and so on. The rebuilding points

x
(m)
k with the numbers k ∼ p/2 shift only negligible. It might be assumed that when the distortion x is so big that

the result of the learning differs from the standard significantly (it is almost impossible to understand the standard),
it is not so important one or several parameters are distorted. Although formally just x p+1

2

= p is the boundary of

the permissible distortions.
In our opinion, the most interesting conclusion here is that the Hopfield type network understands the distortions

as permissible only up to some threshold. That is, a nontrivial feature of the human perception is inherent in the
artificial network of the examined type.

3◦. When the distortion x is not very large the memorized patterns ~s(l) are interpreted by the network as the
distorted copies of the standard ~ε(+). But if during the learning stage the distortion x is very large (it exceeds p), the
network ceases to understand the memorized patterns (4) as distortions of the standard ~ε(+). It does not mean that
in this case the memorized patterns (4) are understood as distortions of the opposite standard ~ε(−): the permissible
distortions of ~ε(−) are the vectors

(

p
︷ ︸︸ ︷

−1, . . . ,−1,−1 + y
︸ ︷︷ ︸

l

,−1, . . . ,−1, 1, . . . , 1), l = 1, 2, . . . , p (25)

where y is not so large. The question is, what do the memorized patterns (4) with large distortions x mean? We think,
that the increase of x above the the threshold p can be understood as the more and more negation of the standard
~ε(+). As if the network is learned by the memorized patterns, which denies the standard ~ε(+). In other words, the
network is relearned by presentation of negative examples.

There is big and clear to everybody difference between the relearning with the help of negative examples and
the learning of the opposite truth. In the framework of our model in the last case slightly distorted n-dimensional
vectors of the type (25) ought to be used as memorized patterns. Then, with no problem the network understands
the standard ~ε(−). The relearning is entirely other case. It is well known: the better the incorrect truth has been
understood, the more difficult (and sometimes even impossible) to correct it; it is comparatively easy to correct the
result slightly, but it is much more difficult to revise it in the main, etc.

We think, that the dependence of kmax on p (see the Theorem) is the reflection of just these problems. When the
number p of the parameters which have to be corrected is not very great ( p−1

n−1 < 1
3 ), the network can be relearned by

simple presentation of negative examples. In this case kmax = p and, when ”the denial” of the standard ~ε(+) is rather
strong (x > xp), as ”a new” truth the network understands the opposite standard ~ε(−). But if the number of the

corrected parameters is great ( p−1
n−1 > 1

3 ), to relearn the network it is not sufficient to present the negative examples.

In this case
[

p+1
2

]
< kmax < p and whatever large x is (xkmax

< x <∞), as a new truth the network understands not

the opposite standard ~ε(−), but one of the statements intermediate between ~ε(+) and ~ε(−). Though the understood
truth is drawn towards ~ε(−), since kmax > p

2 .
Of course, our interpretation is open for discussion. But it seems that in real life there are a lot of examples, which

confirm our conception4.

4In this connection we are tempted to compare the development of the reforms (”the relearning”) in Russia and in China. In
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B. The Ising model

The interpretation of the Ising model in terms of the matrix S is not known yet. Therefore here the obtained results
are interpreted starting from the form of the Hamiltonian J (3.b). Let’s write it in the form

J ∝

(
A B

BT C

)

,

where the diagonal elements of (p× p)-matrix A and (q × q)-matrix C are equal zero, and






aij = 1− 2y, i, j = 1, 2, . . . , p, i 6= j;
bik = 1− y, i = 1, 2, . . . , p, k = 1, 2, . . . , q;
ckl = 1, k, l = 1, 2, . . . , q, k 6= l;
y = x

p
.

(26)

The matrix J corresponds to a spin system with the infinitely large interaction radius. The system consists of two
subsystems, which are homogeneous with respect to the spin interaction. The interaction between the p spins of the
first subsystem is equal to 1 − 2y; the interaction between the q spins of the second subsystem is equal to 1; the
crossinteraction between the spins of the subsystems is equal to 1− y. When p = n all the spins are interacting with
each other in the same way and we have the usual mean-field approximation for the Ising model at zero temperature.

While y < 1
2 , all the spins are interacting in the ferromagnetic way; when 1

2 < y, the interaction between the spins
of the first subsystem becomes of antiferromagnetic type, and when 1 < y the crossinteraction is of antiferromagnetic
type too. The Theorem allows to trace how the ground state depends on the variation of the parameter y.

Let p < n. For y ∈ (−∞, 1
2 ) the ground state is the ferromagnetic one since 1

2 < y1 = x1

p
, and for x < x1 the

ground state is the standard-vector ~ε(+) (23). It is interesting that the ground state remains ferromagnetic even if
1
2 < y < y1, i.e. when the antiferromagnetic interactions already are shown up in the system. In other words, when
p < n, there is ”a gap” between the value of y corresponding to the destruction of the ferromagnetic interaction, and
the value of y corresponding to the destruction of the ferromagnetic ground state. Only after a ”sufficient amount”
of the antiferromagnetic interaction is accumulated, the first rebuilding occurs and the ground state ceases to be the
ferromagnetic one. Then, when another critical ”portion” of the antiferromagnetic interaction is accumulated, the
next rebuilding of the ground state occurs (it happens when y exceeds y2 = x2

p
), and so on. After the parameter y

reaches the value y′′ = 1 = x′′

p
, the crossinteraction becomes antiferromagnetic too. But the rebuildings of the ground

state go on, since usually xkmax
> p (see the comment to the Theorem in II A).

The energy E = − F of the ground state as a function of the parameter y has breaks at the points yk = xk

p
. It

increases till y ≤ 1 and decreases when y > 1. However, if the memorized patterns are normalized to unit, the energy
of the ground state is a monotonically increasing function of y (see item 1◦ in II B 4).

It is natural to treat p = const, n→∞ as an infinitely large sample with a few number of impurities. In this case
all yk stick to the point y′′ = 1 (see the comment to Eq.(11)). Depending only on the type of the crossinteraction
between the impurities and the rest of the sample, the ground state is either the ferromagnetic one, or the spins of
the impurities are opposite with respect to all other spins.

Russia very great number of the parameters of the social order were simultaneously changed on their opposition. They are a
very wide group of economic regulations, a group of parameters related to home and foreign policy, the parameters related to
human rights and to the destruction of ”the iron curtain” and so on. On the contrary, according to massmedia, in China only
a restricted group of economic regulations has been changed up to now.
And what are the results? Of course, now Russia is not a semi-fascist Soviet State, but it does not reach (until now?) the

stable State system of the modern democratic type. Already for a long time the situation in Russia is characterized as a state,
which is intermediate between these two oppositions. The permanent instability and variations of the internal situation in
Russia are associated with ”the degeneracy of its present ground state”. In the same time (again, if the massmedia information
is trustworthy), China demonstrates a steady increase of well-being of the people. And this stipulates the direction of its
development.
Being not a specialist, I have no right to intrude into such a special field of knowledge as politology. But in accordance with

our results, it appears that, may be, ”a step by step” strategy of reforms is more prospective. That is, the result will be better
if at first one group of the parameters is corrected reliably, then the second group, then the third and so on. According to the
Theorem, taken separately each group of the parameters can be corrected reliably (of course, if the Theorem is applicable in
this case). On the other hand, the final result of ”the relearning” of these two colossi is unknown yet...
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Finally, let’s discuss the case p = n. Then all yk stick to the point y′ = 1
2 (see the comment to Eq.(10)). Here the

destruction of the ferromagnetic interaction occurs simultaneously with the change of the ground state ( ”the gap”
disappears). As long as the interaction of the spins is ferromagnetic (y < 1

2 ), the ground state is ferromagnetic too.

But when the interaction of the spins becomes antiferromagnetic (y > 1
2 ), the ground state turns out to be

(
n

n+1

2

)
-times

degenerate. From the right of 1
2 it is natural to associate the state of the system with the spin glass phase.

Note 3. We would like to remind that the Hamiltonian can be generalized (see Eqs.(12) and (15)). Nevertheless,
at heart of all these generalizations is the strict relation between the elements of the submatrices A and B of the
Hamiltonian:

1 + a = 2b,

see Eqs.(26). This restriction on the matrix elements is justified by nothing. It would be interesting to examine the
case when the matrix elements a and b do not related in any way. We have succeeded in the generalization of our
consideration on this case as well as on the case when the linear term h

∑n
i=1 σi has been added to the functional

F (~σ) (1). In the Ising model due to such a term the external magnetic field can be taken into account. Now we
prepare these results for publication.

C. Factor analysis

In the framework of factor analysis a (p × n)-matrix S with real matrix elements (see Eq.(2)) plays an important
role. Here the matrix S is an empirical matrix of the ”objects-parameters” which includes the exhausting quantitative
description of the phenomenon under consideration6. Its rows are p objects defined by n parameters which are
available for the measurement:

~s(l) = (s
(l)
1 , s

(l)
2 , . . . , s

(l)
n ) ∈ Rn, l = 1, 2, . . . , p – the vector-objects,

~si =









s
(1)
i

s
(2)
i
...

s
(p)
i









∈ Rp, i = 1, 2, . . . , n – the vector-parameters.

The main idea of the factor analysis is as follows: by proceeding from n p-dimensional vector-parameters we have to
introduce such t artificial characteristics, the so called factors, that their number is much less than n (t ≪ n), but
the description of the objects in terms of these factors does not lead to the loss of an important information about

the objects. The factors ~fj are constructed as linear combinations of the vector-parameters ~si,

~fj =
n∑

i=1

a
(j)
i ~si,

which in the sense of a measure of proximity minimize the total deviation of each factor from all the vector-parameters.
It has been shown7, that for the so called centroid method, which is widespread in factor analysis, the problem of the
construction of the first factor is equivalent to the maximization of the functional (1) with the connection matrix of
the Hebb type. The interpretation of the obtained results in terms of factor analysis will be presented elsewhere.
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A. The family of the straight lines Lk(x)

The family of the straight lines (8),

Lk(x) = (n− 2k)2 − 2x
p− 2k

p
(n− 2k), k = 0, 1, . . . , p,

is under investigation. When x = 0 we have Lk(0) = (n − 2k)2. Then if p ≤ n/2 the values Lk(0) decrease
monotonically when k increases:

L0(0) > L1(0) > L2(0) > . . . > Lp(0).

And if p > n/2, beginning from the number n− p the values Lk(0) become twice degenerate:

L0(0) > L1(0) > . . . > Ln−p(0) = Lp(0) > Ln−p+1(0) = Lp−1(0) > . . .

Depending on the number k the straight lines Lk(x) behave themselves in different ways: for k < p
2 and k > n

2 the
slope of Lk(x) is negative, and for p

2 < k < n
2 it is positive. The straight lines with the numbers k = p

2 and k′ = n
2 (if

such k and k′ are found) are parallel to the axis OX .
We denote by x(k,k′) the abscissa of the point of intersection of the straight lines Lk(x) and Lk′(x):

x(k,k′) =
p

2

[

1 +
q

q + p(coswk + coswk′ )

]

= p
n− (k′ + k)

n + p− 2(k′ + k)
, 0 ≤ k < k′ ≤ p. (27)

We would like to point out that the abscissa x(k,k′) depends on the sum k + k′ only. When n + p is odd, the
number of different abscissae x(k,k′) is exactly 2p− 1. When n + p is even, there can be such numbers k′ and k, that
n + p− 2(k′ + k) = 0. The relevant straight lines Lk(x) and Lk′(x) are parallel (they intersect at the infinity).

Generally, the abscissa x(k,k′) increases when the sum k + k′ increases

x(0,1) < x(0,2) < x(0,3) = x(1,2) < x(0,4) = x(1,3) < . . .

But the increase is strictly monotonic only for

p− 1

n− 1
≤

1

3
.

In this case the denominator of the expression for x(k,k′) is nonnegative for all k and k′, and all the intersections of
the straight lines take place in the region x > 0. But if

p− 1

n− 1
>

1

3
,

the abscissae x(k,k′) increases monotonically up to the value k + k′ = n+p
2 where it has a discontinuity and becomes

negative, and after that x(k,k′) again increases monotonically with increase of k + k′. It is easy to verify that for
1
3 < p−1

n−1 ≤
1
2 all the abscissae x(k,k′) with k + k′ > n+p

2 remain negative. But if p−1
n−1 > 1

2 , at least x(p−1,p) appears in
the region x > 0. Nevertheless, in this case also x(p−1,p) remains less than x(0,1). In Fig.2 the dependence of x(k,k′)

on k + k′ is shown both for p−1
n−1 less and greater than 1

3 .

B. The proof of the Theorem

We divide the proof into two steps.
1◦. Let’s observe how the ground state changes as x increases. For x = 0 the ground state is the one with k = 0

(see above the inequalities for Lk(0)), and this state is nondegenerate. As x increases, the state with k = 0 remains
the ground state, till the straight line L0(x) does not intersect any other straight line Lk′ . From Eq.(27) it is evident,
that the first intersection happens with the straight line L1(x) at the point

x1 ≡ x(0,1) = p
n− 1

n + p− 2
.
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FIG. 2. The dependence of the abscissa x(k,k′) of the intersection of the straight lines Lk(x) and Lk′(x) on k + k′. Its
character is defined by the value of the parameter p−1

n−1
: a). for p−1

n−1
≤

1
3

the curve x(k,k′) increases monotonically, remaining all

the time in the region x > 0; b). for 1
3

<
p−1
n−1

the monotonically increasing curve x(k,k′) has discontinuity when k + k′ = n+p

2
,

after that again it increases monotonically.

After this the ground state is the state with k = 1 from the class Σ1. This state is p-times degenerate.
As x increases further, the state with k = 1 remains the ground state till the straight line L1(x) does not intersect

any other straight line Lk′(x). From Eq.(27) it is evident, that the first intersection takes place with the straight line
L2(x) at the point

x2 ≡ x(1,2) = p
n− 3

n + p− 6
.

After this the ground state is the state with k = 2 from the class Σ2. And this state is
(
p
2

)
-times degenerate.

By analogy with the above reasoning and taking into account the behavior of the family of the straight lines Lk(x)
(see VA), we obtain that when x increases the rebuildings of the ground state happen at the points

xk ≡ x(k−1,k) =
p

2

[

1 +
q

q + p(coswk−1 + coswk)

]

= p
n− (2k − 1)

n + p− 2(2k − 1)
k = 1, 2, 3, . . . .

At the point of the k-th rebuilding the
(

p
k−1

)
-times degenerate ground state from the class Σk−1 is replaced by the

(
p
k

)
-times degenerate ground state from the class Σk.

The rebuildings of the ground state take place till the increase of x is accompanied by the intersections of the
straight lines Lk−1(x) and Lk(x). In other words, till 2k−1 is less than n+p

2 . Since for p−1
n−1 ≤

1
3 even 2p−1 < n+p

2 , in
this case as x increases one after the other all the p possible rebuildings of the ground state take place. Consequently,
for all x > xp ≡ x(p−1,p), the ground state remains in the class Σp. (Strictly speaking, if p−1

n−1 = 1
3 , the last rebuilding

of the ground state happens at the infinity.)
But if p−1

n−1 > 1
3 , the rebuildings of the ground state come to an end when 2k − 1 becomes more than n+p

2 . For
these k the abscissa x(k−1,k) of the intersection of the straight lines Lk−1 and Lk is negative, and under the further
increase of x there is no new intersection of the straight line Lk−1 with any other straight line Lk′ . In other words,
the state with the number k− 1 remains the ground state under the unlimited increase of x. In this case the number
kmax of the last rebuilding is defined from the equation

2kmax − 1 =
n + p

2
=⇒ kmax =

[
n + p + 2

4

]

. (28)

Thus, in the region x > 0 the last rebuilding of the ground state takes place when x = xkmax
. (If n+p+2

4 =
[

n+p+2
4

]
,

the last rebuilding takes place at the infinity.) For negative x there are no rebuildings of the ground state, since in
this region the straight line L0(x) majorizes all other straight lines.

15



2◦. To complete the proof, let’s show that the functional has no other local maxima. The configuration vector,
which provides a local maximum, has the form (5) necessarily. Let for some x this vector belong to the class Σk.
Then the inequalities

Lk(x) ≥ Lk−1(x), Lk+1(x)

must be fulfilled. Removing the brackets and collecting the similar terms we obtain:

x[2± (n + p− 4k)] ≥ p[1± (n− 2k)]. (29)

A). Let n + p− 4k ≥ 2. It means that k + 1 ≤ n+p+2
4 , or, in other words, that k ∈ [1, kmax − 1]. The sign ”+” in

Eq.(29) results in the inequality

x ≥ p
n− (2k − 1)

n + p− 2(2k − 1)
= xk,

and the sign ”–” results in the inequality

x ≤ p
n− (2k + 1)

n + p− 2(2k + 1)
= xk+1.

Thus, for k ∈ [1, kmax−1] the state with the number k is the local maximum only if x belongs to the interval [xk, xk+1],
where this state is the global maximum.

B). Let now −2 ≤ n + p− 4k < 2. It means that k > kmax − 1 and k ≤ kmax; in other words, that k = kmax. The
sign ”+” in Eq.(29) results in the inequality x ≥ xkmax

, and the sign ”–” results in the inequality x ≥ xkmax+1. But
we know that the value of xkmax+1 is already negative (see above VA). Consequently, the simultaneous fulfillment of
the last two inequalities takes place in the region x ≥ xkmax

. And this means that the state with the number kmax is
the local maximum of the functional only if it is its global maximum.

C). And, finally, let n+p−4k < −2; in other words, let k > kmax. The sign ”+” in Eq.(29) results in the inequality
x ≤ xk, and the sign ”–” results in the inequality x ≥ xk+1. But as it has been shown in VA, even for k > kmax

we have the ordering xk < xk+1. Consequently, for k > kmax the simultaneous fulfillment of inequalities (29) is
impossible. This completes the proof.

C. The region of the ground state rebuilding

The region where the parameter x changes from x1 to xkmax
, will be called the rebuilding region of the ground state.

Let’s examine this region.
The left boundary of the rebuilding region is

x1 = p ·
n− 1

n + p− 2
≥

p

2
,

where the equality takes place only for p = n. It is easy to verify that x1 is a monotone increasing function of both p
and n. These statements are important for the meaningful interpretation of the obtained results.

The expression for the right boundary of the rebuilding region depends on the relation between p and n. If p−1
n−1 < 1

3 ,
then kmax = p and

xkmax
= xp = p ·

n + 1− 2p

n + 2− 3p
.

As function of n the value of xp decreases. Consequently, for n → ∞ and fixed p the rebuilding region contracts to

the point x′′ = p. And if p−1
n−1 > 1

3 , than

xkmax
= p ·

n− p + 4κ

8κ
,

where 4κ = 1, 2 or 3, and kmax is given by Eq.(28). When n is fixed and p→ n, the rebuilding region also contracts
to the point. It is not difficult to see that this point is x′ = n

2 .
In many respects the point x′′ = p is remarkable (see III). It is easy to see that before x becomes equal to x′′ = p,

exactly p+1
2 rebuildings of the ground state take place. This result does not depend on n (if only p is less than n− 1).
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D. The rotation of the memorized patterns and kmax

Let’s prove the generalization of the Theorem for the case, when all the memorized patterns (4) are subjected to
the rotation as a whole (see II B 2). For simplicity we assume that the number t + 1 of different values of the cosines
(17) is even:

t + 1 = 2r.

Let’s agree the subscript k to take the values 1, 2, . . . , r = t+1
2 only.

Since for every k we have coswk = − coswt+1−k, then coswr−1 = − coswr and the ordered sequence of the cosines
has the form:

cosw0 > cosw1 > . . . > coswr−1 > 0 > coswr > coswr+1 > . . . > cosw2r−1.

It is not difficult to prove that the rebuilding of the ground state from the class Σ
(U)
j−1 into the class Σ

(U)
j happens at

the point xj (18). In what follows we’ll prove that if x1 > 3
4p, one after another all the t rebuildings of the ground

state take place according to the above scheme: kmax = t. And if x1 < 3
4p, the rebuildings of the ground state come to

an end when the denominator in Eq.(18) becomes negative.
The numbers k and t + 1 − k are symmetric with regard to the ends of the sequence of the rebuilding points. For

every rebuilding point

xk =
p

2
·

[

1 +
q

q + p(coswk−1 + coswk)

]

,

the point xt+1−k is called the dual rebuilding point. The expression for xt+1−k,

xt+1−k =
p

2
·

(

1 +
q

q − p(coswk−1 + coswk)

)

,

differs from the expression for xk by the sign in the denominator only. The rebuilding point

xr =
p

2
·

[

1 +
q

q + p(coswr−1 + coswr)

]

=
p

2
·

[

1 +
q

q

]

= p

is dual to itself. We begin the proof of the general statement with the proof of the following
Lemma.

1. The inequality xk > 3
4p is equivalent to the inequality q − p(coswk−1 + coswk) > 0.

2. For the value of xt+1−k to be negative, it is necessary and sufficient to have 2
3p < xk < 3

4p.
The proof of the first statement is obtained from the convertible sequence of the inequalities

xk >
3

4
p⇐⇒

q

q + p(coswk−1 + coswk)
>

1

2
⇐⇒ q − p(coswk−1 + coswk) > 0.

Let’s prove the second statement. Let

xt+1−k =
p

2
·

[

1 +
q

q − p(coswk−1 + coswk)

]

< 0.

Then, firstly, q − p(coswk−1 + coswk) < 0, and it is equivalent to the inequality xk < 3
4p. And, secondly:

q

q − p(coswk−1 + coswk)
< −1,

from where we directly obtain q + p(coswk−1 + coswk) < 3q, and, consequently,

xk =
p

2
·

[

1 +
q

q + p(coswk−1 + coswk)

]

>
p

2
·

[

1 +
q

3q

]

=
2

3
p.

Assume the converse. Let 2
3p < xk < 3

4p. This means that

−q < q + p(coswt−k + coswt−k+1) < 0,
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from where it follows that

xt+1−k =
p

2
·

[

1−
q

| q + p(coswt−k + coswt−k+1) |

]

<
p

2
·

[

1−
q

q

]

= 0,

i.e. that the abscissa xt+1−k is negative. This concludes the proof of the Lemma.
Generally, the first rebuilding point x1 always exceeds p

2 . The proof of the main statement is in three steps.

Step 1. Let’s examine the case x1 > 3
4p. Then according to the first conclusion of the Lemma q−p(cosw0+cosw1) > 0

and therefore a similar inequality is true for any other k: q−p(coswk−1 +coswk) > 0. Consequently, all the rebuilding
points xj (18) are positive. And this is just the case when in consecutive order one after another all t possible
rebuildings of the ground state take place. It is interesting that this case corresponds to very simple requirement to
the first rebuilding point: x1 > 3

4p.

Step 2. Now we investigate the case 2
3p < x1 < 3

4p. According to the second statement of the Lemma, here the
rebuilding point xt, which is dual to x1, is negative: xt < 0. Then we pass from x1 to x2: x1 < x2. If x2 is still
less than 3

4p, its dual rebuilding point xt−1 is negative too. Then we must to pass from x2 to x3: if x3 is also less

than 3
4p, its dual rebuilding point xt−2 is also negative, and so on. Since at least xr = p > 3

4p, sooner or later we get

the number k, for which xk exceeds 3
4p: xk > 3

4p. Then according to the Lemma its dual rebuilding point xt+1−k is
already positive:

xt+1−k =
p

2
·

[

1 +
q

q − p(coswk−1 + coswk)

]

> 0.

It is evident that xt+1−k is not only positive, but exceeds x1:

xt+1−k − x1 ∼ cosw0 + cosw1 + coswk−1 + coswk > 0.

Thus, the last rebuilding of the ground state happens at the point with the number t + 1 − k. The next rebuilding
point, xt−k+2, is already negative. In other words, kmax is exactly equal to j ≡ t + 1− k, where

q + p(coswj−1 + coswj) > 0, but q + p(coswj + coswj+1) < 0.

And just these inequalities give the statement we have to prove.
Step 3. Finally, we have to examine the case x1 < 2

3p. This inequality is equivalent to q − p(cosw0 + cosw1) < −q,
from which it follows that xt > 0:

xt =
p

2
·

[

1−
q

| q + p(cosw0 + cosw1) |

]

>
p

2
·

[

1−
q

q

]

= 0.

In the same time xt < x1:

x1 − xt ∼
q

q + p(cosw0 + cosw1)
−

q

q − p(cosw0 + cosw1)
> 0.

We pass from x1 to x2. If x2 is also less than 2
3p, its dual rebuilding point xt−1 is also positive (but this time it does

not exceed xt). Increasing the number k we sooner or later get the rebuilding point xk which exceeds 2
3p. And then

we find ourselves under the conditions discussed in Step 2: 2
3p < xk < 3

4p. Here the point xt+1−k, which is dual to

xk, is negative. At the next steps we get such a number k, that xk exceeds 3
4p. According to the above reasoning this

means that kmax = t + 1 − k. In other words, in the case x1 < 2
3p, at first xj increase up to the maximal positive

value, then become negative, and after that they increase. Beginning with a certain number j, the values of xj are
positive again, but less than x1. This concludes the proof.

Thus, the rebuilding points xj , j = 1, 2, . . . , t behave themselves in different ways depending on the interval to
which the first point x1 belongs:

x1 >
3

4
p,

2

3
p < x1 <

3

4
p, x1 <

2

3
p. (30)

The analogous result has been also obtained above, when in VA the family of the straight lines Lk(x) was investigated.
There the behavior of the rebuilding points were depended on the belonging of the ratio p−1

n−1 to one of the three intervals

p− 1

n− 1
<

1

3
,

1

3
<

p− 1

n− 1
<

1

2
,

1

2
<

p− 1

n− 1
. (31)
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It is easy to verify that for u1 = u2 = . . . = up = 1 the inequalities (30) turn into inequalities (31). The case of an
even t = 2r is examined in the same way.
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