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Abstract. The computer models of fish exploratory behavior in mazes are 
developed and investigated. These models are inspired by the exploratory behavior 
of zebrafish, Danio rerio, in mazes. We consider three types of models. Model 1 
describes the increase of knowledge acquired by fish about arms of the maze. 
Model 2 characterizes fish’s predictions of future situations in the maze. A fish 
uses knowledge and predictions to organize its behavior. These two models 
characterize initial stages of fish exploratory behavior in mazes. Upon completion 
of these initial stages, the fish obtains some experience of movements in the maze 
and some knowledge about general features of the maze. Model 3 takes into 
account this experience. In this hypothetical model, we suppose that after certain 
exploration of the rather complex maze, the fish is able to form some generalized 
notions characterizing places in this maze. Using these generalized notions, the 
fish forms a mental plan of its movement towards the goal situation. 

Keywords: modeling animal behavior, exploratory behavior, prediction of future 
situations, planning behavior. 

1. Introduction 

The goal of our work is a mathematical modeling and computer simulation of cognitive 
behavior of zebrafish, Danio rerio, in the course of maze exploration. Our models are 
based solely on qualitative description of exploratory behavior. Therefore, we describe 
biological experiments very briefly, focusing only on those qualitative data, which are 
sufficient for understanding the models. 

We design and investigate three types of models. The model 1 describes how the 
fish acquires knowledge about arms of the maze. The model 2 considers actions of the 
fish in certain situations in the maze (the situation can be the current arm in which the 
fish is in the given moment of time). This model characterizes fish’s predictions of the 
next situation for the current situation and action. We believe that the models 1 and 2 
characterize initial stages of the fish exploratory behavior in mazes. Upon completion 
of these initial stages, the fish obtains some experience of movements in the maze and 
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some knowledge about general features of the maze. The model 3 is the hypothetical 
one; this model is developed for the case of fish movements in a rather complex maze. 
In this hypothetical model, we suppose that after certain exploration of the maze, the 
fish is able to form some generalized notions characterizing places in this maze. Using 
these generalized notions, the fish mentally forms a simple knowledge database; then 
using this knowledge database, the fish designs a plan of its movement towards the 
goal situation. 

Additionally, we take into account that two opposing trends in the behavior of 
animals are usually observed (Inglis et al, 2001). One of them is a need for new, 
unpredictable stimulation, leading to an exploratory behavior, and the other is the 
desire to predict the results of the behavior. A permanent motivation to obtain 
information on the environment prevails if basic needs (e.g. the need for food) are 
satisfied; this corresponds to the hypothesis of the “reduction of uncertainty” (Inglis et 
al, 1997; Inglis et al, 2001). 

These two trends (the aspirations for unpredictable novelty and for predictability) 
in the behavior of animals are contradictory at first sight. Competition between these 
trends leads to a balance between novelty and predictability, and results in an efficient 
exploration of unfamiliar environment. The idea of this balance has been successfully 
implemented in the control software of robotic dog Aibo (Oudeyer & Kaplan, 2004, 
2009). 

The paper is organized as follows. Section 2 contains the short description of 
biological experiments on Danio rerio. Section 3 describes the models 1 and 2 
characterizing the knowledge acquisition and formation of predictions by fish during 
initial stages of maze exploration; the results of computer simulation for these models 
are also included in this section. Section 4 describes non-trivial hypothetic model 3 that 
explains how a fish could form a mental plan of movement towards the goal situation 
in the rather complex maze. 

2. Behavioral experiments. Behavior of fish in mazes 

Zebrafish behavior was studied in an unfamiliar environment, namely in mazes of two 
types: the four-arm cross-shaped maze (Fig. 1) and the more complex maze with 11 
arms (Fig. 2). A detailed description of experimental procedures and quantitative data 
will be published elsewhere (Nepomnyashchikh & Osipova, in preparation). 
 

 

 
 

Fig. 1 The cross maze. 



 

2.1. Behavior of zebrafish in the cross maze 

The sizes of the maze were as follows. The length of the arm from the entrance into the 
arm to its end was 65 mm; the width of arm was 33 mm; the center square between the 
entrances to the arms was 33x33 mm. The height of the maze was 48 mm; the water 
level in the maze was 38 mm. 

 

 
 

Fig. 2 The maze with 11 arms. Impenetrable barriers (gray) are shown within the west and east halves of the 
maze. 

The main results of the experiment are as follows. 20 male zebrafish was observed (a 
typical length of fish was 25 mm). Each fish was placed individually into an arm and 
closed in this arm for 2 minutes by means of a removable hurdle. Then the hurdle was 
removed, and the fish behavior was observed for 15 minutes. 

The basic types of fish movements are described below; the numbering of the arms 
is shown in Fig. 1. A significant portion of fish movements consisted of stereotyped 
repetitive sequences, which we will refer to as “motifs”. The most frequent motifs 
were: 
1. Repeated shuttle transitions between adjacent corridors, for example, 12121212 

or 141414... This motif was most noticeable. 
2. Shuttle-like movements between opposing arms: 131313… and 242424... This 

motif was less frequent as compared with the first one. 
3. Rarely, there was a steady transition from one arm to another adjacent one, 

clockwise (1234) or in the opposite direction (3214).  
4. In addition to these motifs, random movements of the fish were observed rarely, 

for example, such as 231421. 
A typical sequence of visits to arms is shown below: 

2121212121232323422323232313232323232132312313412341234123423232323231
3214314121412121234121212121212313212121234123432424242413131312424243
121324121412312. 

Underlined chains of visits correspond to above mentioned motifs. Random 
movements are not underlined. 

2.2. Behavior of fish in the maze with 11 arms 

In the maze with 11 arms (Fig. 2), the length of arms 2 and 10 was 110 mm, arms 
3, 6, 9 and 11 had the length 60 mm, arms 4, 5, 7 and 8 had the length 45 mm. The 
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length of the arm 1 was 30 mm. The width of each arm was 20 mm. Twenty male 
zebrafish (of the same length as in the case of cross maze) were observed. 

The following motifs were observed in this maze: 
1. Shuttle-like movements in opposite directions along a one of long arms 2, 3, 6, 

9, 10, or 11 (but not 1). Reaching the end of an arm, a fish turned back, moved 
in the opposite direction, reached the opposite end of the arm, again turned 
back, etc. 

2. Shuttle-like movements between adjacent arms, e.g., 232323… or 262626... 
3. Shuttle-like movement along arms 4 and 5 or 7 and 8. In these cases, the fish 

repeatedly moved, for example, from the arm 4 to the arm 5 and back: 454545... 
During such movements, the entrance into the arm 1 was ignored. 

4. Movements 4171417... and 5181518... In this case, the fish entered into the arm 
1, whenever it reached this short arm. 

5. Fish could repeatedly move along the perimeter of any half of the maze, for 
example, 2345623456... 

Thus, the behavior of fish in both mazes revealed certain regularities. We used 
these regularities as a starting point for developing computer models of fish behavior. 

3. Models of fish movements, accumulation of knowledge, formation of predictions 

Our models simulate movements of an agent (modeled zebrafish) in mazes. The time t 
is discrete, t = 0,1,2... At each step of time, the agent leaves an arm and enters into 
another one. The models were studied using computer simulation. The quantitative 
results were usually averaged over 10000 simulations with different starting random 
seeds. 

This section describes two models that characterize initial stages of the fish 
exploratory behavior in mazes. The model 1 describes acquisition of knowledge about 
arms of the maze. The model 2 characterizes predictions of the next situation for the 
current situation and action. For the sake of simplicity, we consider in this section 
mainly the fish movements in the cross maze. 

3.1. Model of knowledge acquisition 

The model of knowledge acquisition (i.e. the model 1) describes the agent movements 
in the maze in accordance with motifs described above, and the increase of knowledge 
about frequently visited arms. The model assumes that the agent moves according to 
the two most frequent motifs (see Section 2.1), namely, motifs of the type 1 (the 
movement of an agent between adjacent arms) and the type 2 (the movement between 
the opposite arms). We also take into account the possibility of random movements. 

In order to take into account transitions between different motifs, we introduce the 
following model parameters: transition probabilities between the two types of motifs 
Pij, i,j = 1,2. For example, P12 is the probability of transition from the first motif to the 
second one. We also introduce the probabilities of transitions from a random movement 
(indexed “0”) to motifs, P00, P01, P02, as well as the probability of transition from 
motifs to a random movement P10 and P20. The following natural restrictions are 
imposed: P00 + P01 + P02 = 1, P10 + P11+ P12 = 1, P20 + P21 + P22 = 1. It is assumed that at 
the probabilities P11 and P22 the motif does not change. Transitions from the certain 
motif of the first type to another motif of the same type are neglected; we believe that 



 

such transition is carried out through a random selection of the movement type. If there 
are several possible arms for movement in accordance with the described method of 
motif changing, a next arm is selected at random. 

Acquisition of the knowledge about the arms was modeled as follows. It was 
assumed that the agent has a certain knowledge Ki about each arm, 0 ≤ Ki ≤ 1, i = 
1,2,3,4. Initial values of knowledge Ki are 0. When the agent visits i-th arm, the value 
Ki becomes equal to 1. Additionally, all values Ki slightly decrease with time: at any 
time moment t, values Ki are multiplied by the factor dK (0 < dK < 1, 1–dK << 1). 

A special tendency to enter into those arms, which the agent did not visited for a 
long time, was introduced as follows. The agent at the time step t considers knowledge 
Ki about all four arms, and at the next step t+1 the agent with a certain probability 
Pchoice moves into the arm, which has a minimal value of Ki. Such movement into the 
arm with a minimal value of Ki occurs independently of the method of motif changing 
that was described above. The described tendency implies that a fish sometimes checks 
the arm, which it did not visit for a long time, because some good things (for example, 
food) could appear in such arm. 

It should be noted that the movement into the arm with smallest value of Ki is 
rather simple in the case of the cross type maze: the agent knows values of Ki for all 
four arms, selects the arm with minimal Ki and moves into this arm. Such selection and 
movement into the arm with minimal Ki is essentially more complex for the maze with 
11 arms; these processes are described in Section 4. 

We analyzed the model by means of computer simulation. The parameters of 
simulation were as follows: the factor of knowledge decrement was dK = 0.9, the 
transition probabilities Pij were: P00 = 0.4, P01 = 0.4, P02 = 0.2; P10 = 0.1, P11 = 0.8, P12 
= 0.1; P20 = 0.2, P21 = 0.6, P22 = 0.2, the probability of movement into the arm with 
minimal knowledge Pchoice was variable. 

The main results of computer simulation for this model are represented in Fig. 3, 
which shows the dynamics of the sum of knowledge KSUM about all four arms for 
different values of probability Pchoice. The maximal possible value of Ki for any arm is 
1; therefore, the maximum of the sum KSUM is 4. Owing to the decrease of values Ki 
(that is due to the factor dK), the sum KSUM does not reach this maximal possible value. 
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Fig. 3 The dependence of the sum KSUM of knowledge for all arms in the cross maze on the time t for 
different values of Pchoice (averaged over 10000 different starting random seeds). 1) Pchoice = 1. 2) Pchoice 
= 0.5. 3) Pchoice = 0. The factor of decreasing knowledge is dK = 0.9. 

 
Fig. 3 shows that the summarized knowledge KSUM about the maze grows faster 

and reaches larger values at large probabilities Pchoice. 



 

The computer simulation demonstrated that navigation of agents was qualitatively 
similar to the behavior of real fish. Repetitive shuttling movements between adjacent 
arms was observed, which corresponds to the motif of the first type. Also, repeated 
shuttle movements between opposite arms, which correspond to the motif of the second 
type, were sometimes observed. 

A typical example of the arm sequence visited by the agent is as follows (Pchoice = 0 
for this example): 
414343434343434343434342121131112434341212111114141414141311214342424234343434331313434
411133434343434313112121212121212123232323232343434322141414141423232314432113312121212
143432331414141412121212123332141414141. 

As for real fish (see Section 2.1), underlined chains correspond to the motifs 
described above. Sequences of visited arms for the agent and for the real fish are 
similar to each other. Therefore, the agent movement is in qualitative agreement with 
the fish movement. 

3.2. Model of predictions of future situations 

The computer model that describes the formation of predictions of future situations by 
the agent has been developed and studied. This model 2 differs from the model 1 
described in the Section 3.1: movements of the agent are not in accordance with motifs; 
these movements are mainly random. Predictions are characterized quantitatively by 
the values of assurance of these predictions AS. Namely, for the given initial situation St 
and the action At, the assurance of the prediction of the next situation St+1 is 
characterized by the value AS (0 ≤ AS ≤ 1). Each situation corresponds to a particular 
arm; the number of different situations equals to 4. When the agent leaves an arm, there 
are three possible actions At: 1) to turn into the right arm, 2) to go into the opposite 
arm, 3) to turn into the left arm. The agent predicts the next situation St+1. Thus, the 
assurances AS characterize all possible chains {St, At} → St+1. 

To some extent, the considered predictions are similar to the formation of simple 
acceptor of results of action in the theory of functional systems by P.K. Anokhin 
(1974). 

The behavior of the agent in the model 2 is as follows. Initially, at t = 0, all 
assurances AS equal 0; then the agent makes some predictions, and the assurances AS are 
changing. At any time moment t (t > 0), the agent predicts the next situation Spr,t+1 for 
the time step t+1. If the assurance for this prediction is small: AS(St,At,Spr,t+1) < TA (TA is 
a certain threshold value), then the agent at time moment t+1 returns to that arm, which 
it visited at time t-1 (the action At+1 in this case is determined completely). If the 
assurance for this prediction is rather large (AS(St,At,Spr,t+1) > TA), then the agent choose 
randomly one of the possible actions At+1 and moves randomly into some new arm. 
Thus, the agent explores the maze. 

The described mode of the agent’s movement can be considered as an heuristics 
which corresponds to the opposite trends (mentioned in Introduction): 1) the desire to 
predict the results of the behavior reliably (in this case the low assurance of the correct 
prediction increases after repetitions of movements), and 2) the search for a new, 
unpredictable situation (this corresponds to performing random actions at the high 
current assurance). 

The agent makes predictions in the following manner. For the given current 
situation St and action At, the agent checked the assurances AS(St,At,Spos,t+1) for 
predictions of all possible next situations Spos,t+1. Then the agent determines the 



 

situation Smax,t+1 with the maximal value AS(St,At,Spos,t+1): Spr,t+1 = arg 
max{AS(St,At,Spos,t+1)}, and predicts this situation Spr,t+1. Only if all values 
AS(St,At,Spos,t+1) are too small, the agent predicts the next situation randomly. 

The values of assurances AS are adjusted as follows. At the time step t+1, the agent 
checks the prediction that it has made at the time step t. If the prediction of the next 
situation is correct (the predicted situation Spr,t+1 coincides with the real situation St+1: 
Spr,t+1 = St+1), then the assurance of this prediction is increased according to the 
expression: 

 
ΔAS(St,At,Spr,t+1) = dI[1–AS(St,At,Spr,t+1)],   (1) 

 
where St and At are the situation and the action in the moment t, Spr,t+1 is the predicted 
situation that the agent expects, dI is the factor of increasing of assurances (0 < dI < 1). 

If the prediction is wrong (Spr,t+1 ≠ St+1), then the assurance of this prediction 
decreases: 

 
ΔAS(St,At,Spr,t+1) = – dDAS(St,At,Spr,t+1)],   (2) 

 
where dD is the factor of decreasing of assurances (0 < dD < 1). According to 
expressions (1), (2), the values of assurances are restricted: 0 ≤ AS ≤ 1.  

In addition, it is assumed that all assurances values are multiplied by the factor dA 
(0 < dA < 1, 1–dA << 1) at any time step; i.e. all assurances AS(St,At,St+1) are slightly 
reduced. 

Thus, the agent forms the assurance of the prediction of the final element of the 
chain {St,At} → St+1. The assurances for all possible chains {St,At} → St+1 are stored by 
the agent. 

The model 2 was analyzed by means of the computer simulation. The parameters 
of simulation were as follows: the threshold for estimations of assurance values was TA 
= 0.9 (the assurance AS is large, if AS > TA), the factors of increasing and decreasing of 
assurances for adjustment of assurances were dI = dD = 0.3, the factor of slight 
reduction of all assurances was dA = 0.995. 

The main results of computer simulation for this model are represented in Fig. 4, 
which shows the dependence of the sum of all assurances for the whole cross maze    
AS-SUM on the time t. Initial assurances equal 0; then the summarized assurance AS-SUM 
for the maze grows. 

 

0

2

4

6

8

10

12

0 200 400 600 800 1000

 
 
 
 
 
AS-SUM 
 
 
 
 
 
 
                                                              t  

Fig. 4 The dependence of the summarized assurance AS-SUM on the time t for the whole cross maze (averaged 
over 10000 different starting random seeds). 

 



 

In accordance with the number of all situations (that equals 4) and possible actions 
(that equals 3), there are 12 correct predictions. The maximal summarized assurance AS-

SUM equals this number of correct predictions. This maximal possible value of the 
summarized assurance (12) is never achieved, because all assurances are slightly 
reduced at any time step. 

Analogously to the cross maze, the computer models for fish movement, 
accumulation of knowledge, and formation of assurance of predictions for the maze 
with 11 arms were also developed and analyzed. These models and corresponding 
results of simulation were very similar to those obtained for the cross maze. However, 
the 11-arms maze is rather complex and it is difficult to model processes of the agent 
movement into a selected arm (in particular, into the arm with minimal value of 
knowledge Ki). Therefore, in order to represent such movements, we developed the 
new hypothetical model for the maze with 11 arms. This model 3 is described in the 
next section. 

4. Hypothetical model of planning of movement in the maze with 11 arms 

The hypothetical computer model assumes that after certain period of maze 
exploration, the fish is able to form some generalized notions that characterize the 
essential places (situations) in this maze (see Fig. 5). These 8 notions correspond to 8 
situations St, in which the agent can be at the time moment t. These notions are: the 
most west/east arms in the maze (1 and 8 in Fig. 5), the north/south passes in the 
west/east halves of the maze (2, 3, 6, and 7), the places near the short arm in the west 
and east halves (4 and 5). The agent can execute the following four actions At: 1) to 
move to north, 2) to move to south, 3) to move to west, 4) to move to east.  

It should be noted that such generalized representation of the maze is similar to 
usual human representation of a territory plan. After some experience, a person 
considers the territory near her/his home using some simple essential places: the street, 
the square, the bridge over the river, the shop, etc. Analogously, the agent uses the 
essential places in the maze. 

The model 3 includes: 1) the knowledge acquisition by the agent about eight 
situations shown in Fig. 5, 2) the formation of assurances of predictions AS for all 
possible chains {St,At} → St+1, and 3) the planning of movement to that situation, which 
did not visited for a long time (such situation has minimal value of knowledge Ki). 
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Fig. 5 The maze with 11 corridors. Situations 1-8 correspond to generalized notions. 
 

The knowledge acquisition and the formation of the assurances of predictions AS 
are almost the same as in the models described in the Section 3. The only difference is 
as follows. The model of the knowledge acquisition in the case of the maze with 11 



 

arms does not use the motifs, and there is no returning to the previous arm in case of a 
small assurance of the current prediction; the exploratory movements in this rather 
complex maze is manly random. 

We analyzed these models of the knowledge acquisition and the formation of the 
assurances of predictions by means of computer simulation. The parameters of 
simulation were the following: the factor of decreasing knowledge Ki was dK = 0.99, 
the factors of increasing and decreasing of assurances for assurances adjustment 
according to expressions (1) and (2) were dI = dD = 0.3, the factor of slight reduction of 
all assurances was dA = 0.999. 

The results of computer simulation of processes of the knowledge acquisition and 
the formation of the assurances of predictions AS are represented in Figs. 6 and 7. Fig. 6 
shows the dynamics of the sum of knowledge KSUM about all 8 places of the maze (see 
Fig. 5). Each place is characterized by its knowledge Ki (i = 1,…,8). Owing to the 
decrease of values Ki (that is due to the factor dK), the sum KSUM does not reach the 
maximum possible value 8. 
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Fig. 6 The dependence of the sum KSUM of knowledge for all places in the maze with 11 arms on the time t 
(averaged over 10000 different starting random seeds). 

 
Fig. 7 shows the time dependence of the sum AS-SUM of assurances of predictions AS 

for all possible chains {St,At} → St+1 for the whole maze with 11 arms. There are 3 
possible actions in places 4 and 5, while in other places there are 2 possible actions 
(Fig. 5). In accordance with the number of all places (that is equal to 8) and numbers of 
all possible actions, there are 18 correct predictions. The maximal value AS-SUM is equal 
to this number of correct predictions. This maximal possible value of AS-SUM is not 
achieved, because all assurances are slightly reduced at any time step. 
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Fig. 7 The dependence of the summarized assurance AS-SUM on the time t for the whole maze with 11 arms 
(averaged over 10000 different starting random seeds). 

 



 

The most non-trivial part of the current model is the scheme of the planning of 
movement into a selected place; this scheme is described below. 

The model assumes that the agent already has formed the knowledge Ki for all 
situations Si (i = 1,…,8) and the assurances AS for all possible chains {St, At} → St+1. 
This corresponds to time moments after t = 2000 in Figs 6, 7. Therefore, the agent is 
already experienced. Using values of knowledge Ki, the agent intends to move to the 
situation with the smallest knowledge. The agent also knows already the chains {St, At} 
→ St+1, which correspond to large values of assurance. In the described example of the 
simulation, the assurance values AS for correct predictions at t =2000 were 0.88-0.98, 
while the assurances AS for incorrect predictions were negligible small. Therefore, the 
agent knows already the correct predictions. For example, the agent knows that 
performing the action 4 (moving to east) in the situation 2, it will go to the situation 4 
(the place near the short arm in the west half of the maze). Using these correct 
predictions, the agent selects such sequence of situations and actions that result in the 
movement towards the intended situation. 

The following example shows the process of such selection of situations and 
actions and planning of the movement. We suppose that the starting position of the 
agent is the most west arm (the situation 1); the goal situation (for which the 
knowledge Ki is smallest) is the situation 8. Therefore, the agent should create a plan of 
the movement from the starting situation 1 to the goal situation 8 by itself (using the set 
of assurances for all possible situations and actions). The agent creates this plan as 
follows. The agent begins to analyze such situations (6 and 7) and actions that result in 
the goal situation 8. Then the agent analyzes situations and actions that result in the 
pre-goal situations 6 and 7, and so on. Thus, the agent begins from the goal situation 8 
and analyzes consecutively possible ways to reach this situation. The agent also takes 
into account the distance from the considered situation St to the goal situation; this 
distance is the number of actions needed to reach the situation 8 from the situation St. 

The result of agent’s analysis is shown in Table 1. 
 
Table 1 Scheme of analysis of movement towards the goal situation. 

 
Step Sprevious Aprevious Scurrent Distance 

1 6 4 8 1 
2 7 4 8 1 
3 5 1 6 2 
4 5 2 7 2 
5 4 4 5 3 
6 2 4 4 4 
7 3 4 4 4 
8 1 1 2 5 
9 1 2 3 5 

 
In this table, Sprevious, Aprevious, and Scurrent are the previous situation, the action in the 

previous situation, and the final situation respectively in the chain {Sprevious,Aprevious} → 
Scurrent, “Distance” is the distance between the situation Sprevious and the goal situation 8.  

This table demonstrates that initially the agent considers situations from which it 
can reach the goal situation 8; these are situations 6 and 7; performing the action 4 
(moving to east) in any of these situations, the agent goes to the goal situation 8. Then 



 

the agent considers how to reach the situations 6 or 7. The distance from situations 6 
and 7 (the number of needed actions) to the situation 8 is equal to 1. Then the agent 
considers possible ways to reach the situation 6 and the situation 7. Both situations are 
reachable from the situation 5 by means of the actions 1 or 2 (by movements to north or 
to south); this is demonstrated by steps 3 and 4 in Table 1. The agent continues this 
analysis of all possible ways from the starting situation 1 towards the goal situation 8. 
Reaching the starting situation, the agent stops the analysis. 

Then the agent creates a simple knowledge database that characterizes possible 
ways to reach the goal situation 8. This knowledge database is presented in Table 2. 

 
Table 2 Knowledge database. 

 
Initial 

situation 
Number of 

useful 
actions 

Action Next 
situation 

Distance for 
the initial 
situation 

Distance for 
the next 
situation 

1 2 1 2 5 4 
1 2 2 3 5 4 
2 1 4 4 4 3 
3 1 4 4 4 3 
4 1 4 5 3 2 
5 2 1 6 2 1 
5 2 2 7 2 1 
6 1 4 8 1 0 
7 1 4 8 1 0 

 
The knowledge database is simple reconstruction of results of analysis presented in 

Table 1. The second column shows the number of useful actions, which result in a 
decrease of the distance between the considered situation and the goal situation. 

Finally, using this knowledge database, the agent forms a plan of movement. In 
some situations, there are several possible useful actions; according to Table 2, two 
possible useful actions exist in situations 1 and 5. The agent randomly chooses one of 
possible actions in such situations. 

The example of the plan of movement towards the goal situation is shown in Table 
3. According to this plan, when the agent is in the situation 1, it moves to north and 
reaches the situation 2, then it moves to east and reaches the situation 4; next, it moves 
to east to the situation 5, then it moves to north to the situation 6; finally, the agent 
moves to east and reaches the goal situation 8. In the computer simulation, we observed 
this plan and other possible 3 plans. 

 
Table 3 Example of the plan of movement towards the goal situation. 

 
Initial 

situation 
Action Next 

situation 
1 1 2 
2 4 4 
4 4 5 
5 1 6 
6 4 8 



 

5. Discussion and conclusion 

Thus, the models of fish movement, accumulation of knowledge, formation and use of 
predictions have been developed and investigated. The most interesting is the 
hypothetical model of forming the simple database and planning of movement towards 
the goal situation. 

Probably, the described process of forming the plan of movement from the most 
west place in the maze to the most east place is too complex for fish. Nevertheless, a 
fish could form more simple analogous plans. For example, the fish could create a plan 
of movement from the west half of the maze to the east half. Such plan could include 
only two steps: 1) a movement to the place 4 (the place near the short arm between 
halves of the maze, see Fig. 5), 2) the movement to east (into the east half of the maze). 
Additionally, after exploration of a maze and obtaining some experience, a fish could 
form and use some stereotypes of behavior and move without detailed analysis of 
possible ways, without a creation of a detailed plan. 

We can consider a similar planning of movement by humans. For example, a 
human could create such plan of her/his movement from a home to a shop: 1) to go 
from the home to east to the street 1, 2) to go along the street 1 to south to the bridge 
over the river, 3) to cross the bridge and go to south to the street 2, 4) to go along the 
street 2 to south to the shop. Of course, initially such analysis with a map could be 
useful, but after some experience, a stereotype of this movement will be created in the 
person’s mind. E.g., this could be a simple stereotype “the movement to the shop” 
without details of the movement. 

We can consider similar planning for other animals. For example, we can consider 
a similar model of behavior planning for New Caledonian crows, which really form a 
mental plan of consecutive actions of the complex behavioral chain, basing on 
previously obtained knowledge about parts of this chain (Taylor et al., 2010). Actually, 
the crows predict results of their particular actions in certain situations and use these 
predictions. Therefore, we can analyze processes of formation of plans of behavior at 
different evolutionary levels. It is essential that the considered planning is based on 
predictions of the results of elementary actions. 

In this connection, it should be noted that there was the very interesting proposal 
for using a set of logical predictive rules in close relation with the foundation of the 
mathematics (Turchin, 1987). Therefore, we can consider the cognitive processes of 
creation and use of predictions at different evolutionary levels: from fish to humans. 

Acknowledgments 

This work was partially supported by the Russian Foundation for Basic Research, 
Grants No 13-01-00399 and No 15-04-06379. The authors thank Tamara I. Sharipova 
for her help at initial stages of the described research. We are very grateful for the 
valuable remarks and suggestions of the reviewers, who helped us to reevaluate our 
work and to correct the paper. 



 

References 

Anokhin, P.K. (1974). Biology and Neurophysiology of the Conditioned Reflex and its Role in Adaptive 
Behavior. Oxford etc.: Pergamon Press. 

Inglis, I.R., Forkman, B., & Lazarus, J. (1997). Free food or earned food: a review and fuzzy model of 
contrafreeloading. Animal Behaviour, 53(6), 1171–1191. 

Inglis, I.R, Langton, S., Forkman, B., & Lazarus, J. (2001). An information primacy model of exploratory 
and foraging behaviour. Animal Behaviour, 62(3), 543–557. 

Oudeyer, P.-Y., & Kaplan, F. (2004). Intelligent adaptive curiosity: a source of self-development. In L. 
Berthouze et al. (Eds.). Proceedings of the 4th International Workshop on Epigenetic Robotics (Vol. 
117, pp. 127–130). Lund University Cognitive Studies. 

Oudeyer, P.-Y., & Kaplan, F. (2009). What is intrinsic motivation? A typology of computational approaches. 
Frontiers in Neurorobotics. Vol. 1. Article 6. URL: 
http://journal.frontiersin.org/Journal/10.3389/neuro.12.006.2007/full 

Taylor, A.H., Elliffe, D., Hunt, G.R., & Gray, R.D. (2010). Complex cognition and behavioural innovation in 
New Caledonian crows. Proceedings of the Royal Society B, 277 (1694), 2637–2643. 

Turchin, V.F. (1987). A constructive interpretation of the full set theory. Journal of Symbolic Logic, 52(1), 
172 –201. 


