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Abstract. The paper describes the design of an animat control system (the 
Animat Brain) that is based of the Petr K. Anokhin's theory of functional sys-
tems. We propose the animat control system that consists of a set of functional 
systems (FSs) and enables predictive and purposeful behavior. Each FS consists 
of two neural networks: the Actor and the Model. The Actors are intended to 
form chains of actions and the Models are intended to predict futures events. 
There are primary and secondary repertoires of behaviors: the primary reper-
toire is formed by evolution; the secondary repertoire is formed by means of 
learning. The paper describes both principles of the Animat Brain operation and 
the particular model of predictive behavior in cellular landmark environment.  

1   Introduction 

This paper describes the design of animat control system (the Animat Brain) that is 
based on the biological theory of functional systems. This theory was proposed and 
developed in the period 1930-1970s by Russian neurophysiologist Petr K. Anokhin 
[1] and pays special attention to prediction and anticipation of a final required result 
of a goal-directed action.  



There are a number of researches that analyze prediction and anticipation in animat 
control systems [2,3]. Tani investigated recurrent neural network (RNN) approach 
implementing predictive models for mobile robots [4,5]. Witkowski proposed the 
expectancy model that is based on a set of heuristic rules [6]. Butz et al [7] developed 
anticipatory learning classifier systems (ALCSs) that incorporate methods of rein-
forcement learning, genetic algorithm and earlier versions of classifier systems [8,9].  

The main goal of our work is to design the neural network (NN) animat control 
system that enables explicit models of predicted states. The architecture of the NN 
control system is formed by biologically plausible self-organizing processes. We also 
propose simple cellular environments that can be used in both biological and com-
puter simulation experiments.  

The ideas of our work are similar to that of developed in Tani’s research [4,5], 
however we propose more distributed NN architecture as compared with RNN. The 
explicit NN models of predicted states in our approach are similar to SAS relations in 
Witkowski’s dynamic expectancy model [6]. More detailed comparison of our ap-
proach with other works will be given at the end of the paper.   

The paper is organized as follows. Section 2 outlines Anokhin’s theory of func-
tional systems. Section 3 describes principles of animat control system operation. A 
particular example of the proposed model is described in Section 4. Section 5 con-
tains discussion and conclusion. 

2   Anokhin’s Theory of Functional Systems  

Functional systems were put forward by Petr K. Anokhin in the 1930s as an alterna-
tive to the predominant concept of reflexes [1]. Contrary to reflexes, the endpoints of 
functional systems are not actions themselves but adaptive results of these actions. 
According to the functional systems theory, initiation of each behavior is preceded by 
the stage of afferent synthesis. It involves integration of neural information from a) 
dominant motivation (e.g., hunger), b) environment (including contextual and condi-
tioned stimuli), and c) memory (including innate knowledge and individual experi-
ence). The afferent synthesis ends with decision making, which results in selection of 
a particular action.  

A specific neural module, acceptor of the action result, is being formed before the 
action itself. The acceptor stores an anticipatory model of the required result of a 
goal-directed action. Such model is based on a distributed neural assembly that in-
cludes various parameters (i.e., proprioreceptive, visual, auditory, olfactory) of the 
expected result. Execution of every action is accompanied by a backward afferenta-
tion. If parameters of the actual result are different from the predicted parameters 
stored in the acceptor of action result, a new afferent synthesis is initiated. In this 
case, a new functional system is formed and all operations of the functional system 
are repeated. Such processes take place until the final required result is achieved. 

A separate branch of the general functional system theory is the theory of syste-
mogenesis that studies mechanisms of functional systems formation during 1) evolu-
tion, 2) individual or ontogenetic development, and 3) learning. In the current paper 
we consider two of these mechanisms: evolution and learning. 



3 Architecture and Principles of Operation of the Animat Brain 

It is supposed that the animat control system consists of neural network (NN) blocks 
and is analogous to an animal control system. Each block is a formal functional sys-
tem (FS). At any time moment (t = 1,2,…), only one FS is active, in which the current 
action is formed. There are connections between FSs; the active FS can transmit acti-
vation to every FS through these connections. 

Each FS consists of two NNs: the Actor and the Model. Operation of the active FS 
can be described as follows. The state vector S(t) characterizing the current external 
and internal environment is fed to the FS input. The Actor forms the action A(t) in 
accordance with given state S(t), i.e. the Actor forms the mapping S(t) -> A(t). The 
Model predicts the next state for given vectors S(t) and A(t), i.e. the Model forms the 
mapping {S(t), A(t)} -> Spr(t+1). The mappings S(t) -> A(t) and  
{S(t), A(t)} -> Spr(t+1) are stored in NN synaptic weights. Activation is transmitted 
from one FS to others in accordance with connectivity matrix Cij , the value Cij char-
acterizes the probability that j-th FS is activated by i-th FS. 

The animat receives reinforcements (rewards and punishments) which are related 
to animat needs.  

It is supposed that there are primary and secondary repertoires of behaviors. The 
primary repertoire is formed by evolution: there is a population of animats and a set 
of FSs, synaptic weights of NNs and connectivity matrix Cij are adjusted during evo-
lutionary processes. 

The secondary repertoire of behavior is formed by learning. There are two regimes 
of learning: 1) the extraordinary mode and 2) the fine tuning mode.  

The extraordinary mode is a rough search of behavior that is adequate to the cur-
rent situation. This mode comes, if the predicted state Spr(t+1) in the active FS 
strongly differs from the real state S(t+1). In terms of the functional system theory, 
large difference between Spr(t+1) and S(t+1) means that parameters of the result dif-
fer essentially from parameters stored in the acceptor of action result.   

In the extraordinary mode, a random search for new behaviors takes place; namely, 
the connectivity matrix Cij is substantially changed, new FSs can be randomly gener-
ated and selected. This mode is similar to neural group selection in the Edelman’s 
theory of Neural Darwinism [10]. 

In the fine tuning mode, learning is adjustment of NN weights in the FS that is ac-
tive at the current moment of time and in the FSs that were active in several previous 
steps of time. As synaptic weights are updated in those NNs, which were active in 
previous time steps, this learning mode allows forming chains of consecutive actions. 
Synaptic weights in Models are modified to minimize prediction errors (e.g. by means 
of error back-propagation [11]). Synaptic weights in Actors are adjusted by Hebbian-
like rule: the synaptic weights in Actors are modified to make the mappings S(t) -> 
A(t) stronger/weaker for positive/negative reinforcements. 

We introduce two modes of learning (the extraordinary and the fine tuning mode) 
for the following reasons:  

1) We believe that learning by means of these two modes (rough search in a quite 
new situation and fine turning in a partially known situation) is more effective as 
compared with one mode.  



2) There are biological analogues of these two modes of learning. For example, 
jumping spider tries initially to swim or to jump across a water-filled tray [12]. These 
tries can be considered as searching for adaptive behavior in the extraordinary mode.  
Once a partial solution of the problem is found, only details of a successful behavior 
are varied (the fine turning mode of learning). 

 
A particular version of the Animat Brain model is described in the next section. 

4 Particular Model of Animat Brain Operation 

4.1 Animat Environment and Features 

 
Environment. We assume simple 2D cellular landmark environment (Figs. 1,2). Any 
marked cell A, B, C, D, G has its own landmark. The modeled “world” is restricted 
by impenetrable barriers. The animat sensory system is able to perceive the state of a 
marked cell (5 different signals), an unmarked cell and a cell of the barrier. So, there 
are 7 different possible signals from cells. There is the goal cell G.  
 
Animat Features. An animat senses its local environment and executes some actions. 
Actions are executed in accordance with the commands of the active FS of the animat 
control system. At any time moment, the animat executes one of the following five 
actions:  
1- 4) to move on one cell up/down/right/left,  
5) to wait.  

The animat has internal energy resource R. Performing actions, an animat spends 
its resource. We suppose that at every movement (actions 1-4), the animat resource is 
decreased by r1, and when waiting (action 5), the decrease of the resource is negligi-
ble. Reaching the goal cell G, the animat increases its resource by r2.  
 
Animat Sensory System. The animat perceives states of five cells: its own cell and 
four cells around (up/down/right/left). In each of four surrounding cells, the animat 
estimates one of 7 signals (5 kinds of landmarks, unmarked cell or barrier cell); in its 
own cell, the animat estimates one of 6 signals (5 kinds of landmarks or unmarked 
cell). For definiteness we suppose that every such signal is a binary component (1 or 
0) of the state vector S(t).  Also the animat perceives its resource R(t) and the re-
source change for last time step R(t) - R(t-1). As other signals take values 0 or 1, it is 
convenient to characterize resource and resource change by binary values too. So, we 
assume that the animat estimates the binary values SR and SDR , where SR = 1 if R(t) > 
RT and SR = 0 if R(t) < RT (RT is a predetermined threshold resource value), and SDR 
=1 if R(t) > R(t-1) and SDR = 0 if R(t) < R(t-1). Thus, the animat perceives 36 binary 
parameters, characterizing its external and internal environment. These 36 values 
form the current state vector S(t) . 
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Fig. 1. Simple cellular environment. The landmarks A, B, C, D, G are in adjacent cells. The 
cell G is the goal cell. The “world” consists of 4x4 cells; it is surrounded by impenetrable 
barriers (grey cells)  
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Fig. 2. The cellular environment that is similar to the “world” in Fig. 1, but the landmarks A, B, 
C, D, G are separated by one cell distance 

4.2 Animat Control System 

The animat control system is a set of FSs; each FS consists of two neural networks: 
the Actor and the Model. At any time moment, only one FS is active, in which the 
current action is formed. After performing its operation, the active FS activates the FS 
that will be active in next time moment. The new active FS is chosen probabilisti-



cally.  The probability that j-th FS is activated by i-th FS is equal to   
Cij  / (∑ k  Cik ), with Cij as the element of the connectivity matrix (Cij > 0). 

 
Neural Network of the Actor. The Actor is two layer NN. The operation of the 
Actor is described by the following equations: 

xA = S(t),      yA
j = th (∑ i wA

ij xA
i),     zA

k(t) = F(∑ jvA
jk yA

j ),  (1) 

F(a) = 1/[1+exp(-a/b)],   (1a) 

where xA is the NN input vector, it is equal to the current state vector S(t), yA is the 
vector of hidden layer outputs, zA

k(t) are signals of output layer neurons, wA
ij  and vA

jk 
are NN synaptic weights, F(.) is the sigmoid activation function, parameter b regu-
lates the slope of this function. The probability that m-th action is selected is equal to  
zA

m(t) / ∑k  zA
k(t).  The action vector A(t) is determined as follows: Am(t) = 1, if m-th 

action is selected, all other components of A(t) are set to be equal 0.  
 
Neural Network of the Model. The Model is also two layer NN. The operation of 
the Model is described by the following equations: 

xM = {S(t), A(t)},    yM
j = th(∑i wM

ij xM
i),    zM

k(t+1) = F1(∑j vM
jk yM

j) , (2) 

Spr
k(t+1) = 1  if   zM

k(t+1) > 0.5,   Spr
k(t+1) = 0  if   zM

k(t+1) < 0.5,  (2a) 

F1(a) = 1/[1+exp(-a)],   (2b)  

where xM is the NN input vector, it is the compound vector xM = {S(t), A(t)}, yM is 
the vector of hidden layer outputs, wM

ij  and vM
jk are NN synaptic weights, zM

k(t+1) 
are signals of output layer neurons, Spr

k(t+1) are components of the predicted state 
vector Spr(t+1).   

4.3 Learning Mechanism 

There are two regimes of learning: 1) the extraordinary mode and 2) the fine tuning 
mode. 

The extraordinary mode occurs, if there is strong mismatch between the ex-
pected and real results: the predicted state Spr(t+1) in the active FS essentially differs 
from the real state S(t+1). A strong mismatch means the difference in essential com-
ponents of vectors Spr(t+1) and S(t+1): for example, the increase of the animat re-
source was expected, but really the resource was reduced. 

In order to define essential components, we introduce a mask for every block. The 
mask is the vector M of dimension 36, this vector has components that are equal to 0 
or 1. The unit components of the vector M define essential components of the state 
vector S(t+1). Namely, the component Sk(t+1) is determined as essential, if Mk =1. If 
Mk = 0, the component Sk(t+1) is considered as inessential. The essential components 



determine, which regular dependence between the current state S(t), current action 
A(t) and next state S(t+1) is checked by the given Model. 

In the current version of model it is supposed, that the extraordinary mode of 
learning occurs as follows: a) activation is returned back to the i-th FS, that activated 
the current j-th FS, b) the element of the connectivity matrix Cij corresponding to the 
link between these two FSs is changed.  

The change of connection value Cij occurs as follows. First, this value Cij strongly 
decreases in the next time moment t+1, at which the i-th FS repeats activation of other 
FS. At this time moment, the temporary value of connection Cij

Temp is used, and then 
there is a return to the usual connection value Cij :    

Cij
Temp(t+1)  = K1 Cij (t). (3a) 

Secondly, the connection value Cij decreases in long-term manner:  

Cij (t+2) = K Cij (t),  (3b) 

where 0 < K1 < K < 1. For example, we can set K1 = 0.1, K = 0.9.   
Learning in extraordinary mode means that there is certain reorganization of ani-

mat control system operation. It is also possible to implement random generation and 
selection of new FSs in the extraordinary mode of learning; we plan to consider this 
option in further versions of the Animat Brain.  

During the fine tuning mode, learning occurs by adjustment NN synaptic weights. 
This learning takes place when there is no strong mismatch between the expected and 
received result. Learning in Actors and Models occurs in different ways. 

Learning in Actors occurs according to reinforcements. Synaptic weights are ad-
justed in the FS, that is active at the current moment of time t , and in FSs, that were 
active several previous steps of time. These synaptic weights are modified as follows: 

∆Wij = αA γk Xi(t) Yj(t) [R(t) - R(t-1)] ,  (4) 

where Wij is the weight of the considered synapse, Xi(t) is the signal on the synapse 
input, Yj(t) is the output of the neuron corresponding to the given synapse,  αA is 
learning rate of Actors; γ is discount factor (0 < γ < 1), k is the difference between the 
current moment of time and time of operation of the considered FS,  [R(t) - R(t-1)] is 
the value of the current reinforcement. 

As learning occurs in those Actors, which were active in previous steps of time, 
this type of training allows forming chains of actions.   

Learning in the Model occurs, if there is mismatch between the prediction Spr(t+1) 
and the result S(t+1) in any components of these vectors.  

Learning in the Model is carried out by usual method of error back-propagation 
[11], at this learning the target vector is S(t+1), and the NN output vector (that is 
compared with the target vector) is the vector zM(t+1), that is formed at the output 
layer of the Model NN, see formulas (2).     

In addition to fine tuning mode, we consider learning upon achievement of the 
final required result (see description of the functional system theory in Section 2). 
We suppose that, upon achievement of the final required result, there is strengthening 
connections between several FSs, which were active immediately before achievement 
of this result. In the current model the final required result corresponds to reaching 



the goal cell G. For this type of learning connections between FSs are modified as 
follows: 

∆Сij = αL (γL)k r2  , (5) 

where Сij is the connection between considered FSs, αL and γL are learning rate and 
discount factor for this type of learning, k is difference between the reward time and 
time of considered activation transfer, r2 is the value of the reinforcement in the cell 
G. 

4.4 Evolution Mechanism 

We consider a simple genetic algorithm that can be described as follows. An evolving 
population consists of n animats. Evolution passes through a number of generations, 
ng = 1,2,… At any generation, each animat is tested during T time steps independently 
of other animats of the population. At the beginning of the test, the animat resource 
R(t) is set to certain predetermined value R0 and the animat itself is set into the cell A. 
Then the animat acts in accordance with its control system and its resource is changed 
according to reinforcements. When the animat reaches the goal cell and receive the 
reward r2, it is returned to the start cell A. Such process is repeated, until the time T is 
over. After testing all n animats, the transition to the new generation occurs. At this 
moment, the animat having the maximum resource Rmax(ng) is determined. This best 
animat gives birth to n children that constitute a new (ng+1)-th generation.  

The initial architecture of animat control system (the set of FSs and the connec-
tivity matrix Cij) as well as initial synaptic weights of NNs form the animat genome 
G. The genome G is received at animat birth and is not changed during animat life. It 
is transferred (with small mutations) from the parent (the best animat of ng-th genera-
tion) to offspring (all animats of (ng+1)-th generation). Temporary architecture and 
synaptic weights of the NNs are changed during animat life via learning described in 
section 4.3.  

At the beginning of (ng+1)-th generation, the genome G of each newborn animat is 
determined: the offspring genomes are obtained from the genome of parent through 
mutations that include: 

1) duplication (with certain probability PD) of every existing FS; 
2) forming of elements of the connectivity matrix Cij , corresponding to new FSs; 
3) removing (with certain probability PR) of every existing FS; 
4) small random variations of elements of the connectivity matrix Cij and synap-

tic weights of all NNs; 
5) small random variations of mask vectors M for every Model. 

4.5 Interaction between Selection of Actions and Predictions 

In the current model, we pay a special attention to predictions of future states. We 
suppose that essential learning takes place in the extraordinary mode, when there is 
large difference between predictions and results of action. This implies that chains of 
actions (formed by Actors) should correspond to predictions of Models.  



For example, consider the “world” shown in Fig. 2. When the animat placed in the 
cell A moves two times right, it should be able to predict the movement into an un-
marked cell after the first step and into the landmark cell B after the second step. 
Moving further two times upwards, it should predict the displacement into an un-
marked cell and into the landmark cell C after the first and second steps, respectively. 
Then it should be able to predict movements to the landmark cells D and G. In princi-
ple, the animat can find an alternative path to the goal cell G, however, using land-
marks, it is able to find the reliable path. Chains of actions and predictions should be 
in agreement each with other for reliable behavior.  

Thus, we plan to analyze, how the agreement between chains of actions and pre-
dictions can be formed through learning and evolution in the current model. 

5   Discussion and Conclusion 

Comparison with Other Approaches. As was stated in Introduction, our approach 
is similar to models by Tani [4,5], who models predictive behavior of mobile robots 
using RNNs. As compared with Tani’s works, our model provides more explicit rep-
resentation of states S(t), actions A(t) and predictions Spr(t+1).    

Referring to Witkowski work [6] and research by Burz et al [7], we can note that 
our NN approach is based on the biological theory of functional systems [1] and we 
believe that it will be more flexible as compared with rule-based methods used in 
[6,7].  

We can also compare our approach with works by Edelman et al, who investigate 
adaptive behavior that is controlled by huge NN control systems [13]. Our approach 
is at intermediate position between small NN control system investigated in [4,5] and 
very large NN “brains” simulated in [13]. 

Our model includes two types of learning 1) the extraordinary mode and 2) the fine 
tuning mode and this can provide additional advantages as compared with similar 
models [4-7,13].  

In our previous work, we designed Animat Brain architecture that is based on the 
reinforcement learning (RL) and consists of a set of hierarchically linked FSs [14]. 
Every FS is a simple adaptive critic design (ACD) that consists of two NNs: the 
Model and the Critic; the Model is intended to predict the next state S(t+1) for given 
current state S(t), and all possible actions ai (the number of actions ai is supposed to 
be small); the Critic is intended to estimate state value function V(S(t)). Actions are 
chosen in accordance with ε-greedy rule [8] ensuring selection of those actions that 
maximize state values V.  However, analyzing evolution and learning in populations 
of such adaptive critics [15], we observed that ACD operation can be evolutionary 
unstable. This is due to necessity to estimate state value function V(S); these estima-
tions impose too strong a restriction on adaptive agent functioning. In the current 
work we introduce Hebbian-like rule of learning modulated by rewards and punish-
ments instead of usual RL scheme. Similar viewpoint on RL and evolution was ex-
pressed by Stanley, Bryant and Miikkulainen [16], who emphasized that discovering 
complex NN control systems of adaptive agents by means of evolution is more effec-
tive than RL. In contrast to neuroevolution method [16], our schemes of search for 



adaptive behavior by both evolution and learning correspond to biologically inspired 
concept of primary (formed by evolution) and secondary (formed by learning) reper-
toire of behaviors. 

Our approach is similar to works by Wolpert, Kawato et al [17,18] on multi-
modular NN systems for motor control. The architectures investigated in [17,18] 
include multiple pairs of inverse (controller) and forward (predictor) models. The 
controller is similar to the Actor in our architecture; the predictor plays the same role 
as the Model in our schemes. Wolpert, Kawato et al analyze learning at human motor 
control that corresponds to psychological experiments on movement of different 
objects at different conditions by an arm. 

It should be underlined than simulation of adaptive behavior in landmark “worlds” 
proposed in this work (Figs. 1,2) can be used for comparison of different approaches, 
such as RNN [4,5], adaptive critic designs [14], brain-inspired NN control system 
[13], ACLS [7], and distributed NN-based FSs.  

 
Possible Variations on the Proposed Model. One of the difficulties of the current 

model is too large dimension of state vectors S(t) that include 36 components. To 
overcome this difficulty we can consider more specialized FSs. A particular FS can 
perceive only a small subset of parameters from the local environment. For example, 
the FS that is responsible for movement from the cell A to the cell B (Fig. 1) can 
perceive only landmarks A and B and only in left and right cells. Such specialization 
can be implemented by means of mask vectors M* that have components 0 or 1. Pa-
rameters corresponding to zeros (M*

k =0) are not included into state vectors for the 
considered FS. This option can provide a distributed animat control system, in which 
many small specialized FSs constitute the whole Animat Brain. The specialized FSs 
can be formed through evolution and extraordinary mode of learning. It should be 
noted that this scheme of small specialized FSs is similar to the multi-modular archi-
tecture that was proposed and investigated in [17,18]. We can also consider the con-
cept of module responsibility from [17,18] in order to organize a flow of FS activity 
throughout the Animat Brain architecture. 

Figs. 1,2 show simple landmark “worlds”. Obvious generalizations and variations 
are possible: several different goals can be introduced; the landmark distribution can 
be unstable, noisy, etc.  

  
Biological Aspects. We propose to investigate animat behavior in landmark envi-
ronments (simple examples of whose are shown in Figs. 1,2). This is interesting from 
biological viewpoint for the following reasons: 

- It is possible to design the cellular “world” with exactly the same structure for 
real biological experiments. Namely, we can construct the 2D array of cells 
with nontransparent wall between cells, color floor in certain cells by different 
landmarks and make a door between every neighboring pair of cells. Any door 
is automatically closing but it can be opened by an investigated animal. 

- Landmarks are really used by animals in adaptive behavior. For example, 
honey bees use the landmarks for efficient goal navigation [19]. 



- In some biological experiments, such as investigations of rat orientation in 
Morris water maze [20], the animals seem to be able to select and use land-
marks to find the goal.  

So, we can state that it is possible to compare the goal-directed behavior of simu-
lated and real animals in proposed landmark environments. 

Conclusion.   We proposed the biologically inspired Animat Brain architecture that 
consists of a set of functional systems (FSs). Every FS includes two NNs: the Actor 
and the Model and provides action selection and predictions of action results. In the 
case of unexpected events, considerable learning takes place and animat behavior is 
reorganized. We intend to study conditions for which predictions of future events 
(formed by Models) and generations of action chains (formed by Actors) are 
consistent with each other. We also propose to investigate the predictive animat 
behavior in landmark environments that ensure comparison of behavior of simulated 
and real animals in the same model “world”. 
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