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Abstract

 

—The Hopfield associative memory (HAM) is a network with data storage capability. The mathemat-
ical apparatus of the HAM is based on linear matrices, which makes the HAM and attractive tool in many appli-
cations. In this paper, the concept of HAM is considered as a possible approach to learning pattern recognition.
A standard randomization technique is developed to estimate the information capacity and identification effi-
ciency of the HAM. An upper bound for the probability of identification error is found as a function of pattern
clusters and the probability of distortion within a cluster.
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The term “formal neural network” conventionally
refers to a structure comprising 

 

N

 

 node-neurons joined
by edge-synapses [1, 4, 6]. The 

 

n

 

th neuron is treated as
a binary element taking the values

(1)

and the 

 

ij

 

th synapse, as a conductor connecting the 

 

i

 

th
neuron to the 

 

j

 

th neuron and having the conductivity

(2)

Thus, a neural network is determined by the pair

(3)

where 

 

N

 

 is the size of a network and

(4)

is the matrix of its conductivities.
The network operates at two moments of time, ini-

tial and terminal. At the initial moment, the network
input, i.e., the initial numerical values of its neurons, is
determined by a binary sequence received from the out-
side and called an input excitation. Under the synchro-
nous action of the network elements, the state of the net-
work changes from initial to terminal; the terminal state
also has the form of binary sequence. Based on these def-
initions, a neural-network concept of recognition is con-
structed, according to which the network must assign the
same output excitation to all “similar” input excitations;
i.e., it must associate similar input excitations to the same
template. In the simplest form, this concept assumes the
presence of the “environment” where 

 

M

 

 phenomena can
occur. The random occurrence of the 

 

m

 

th phenomenon
excites the initial state

(5)
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where

(6)

is a subset of vertices of the 

 

N

 

-dimensional unit cube
(these vertices play the role of templates) and

(7)

is “multiplicative noise” consisting of 

 

N

 

 independent
equidistributed random variables

(8)

For instance, 

 

m

 

 

 

∈

 

  may be the number of a species

of animals (say, cats); then,  is a standard set of fea-

tures of cats as a species, and 

 

θ

 

N

 

 is the set of features
of an individual, i.e., a particular cat taken at random.
Let the 

 

M

 

 

 

×

 

 

 

N

 

-sizes matrix

(9)

be the set of 

 

M

 

 templates. We say that the quintuple

(10)

specifies a neural-network recognizing device in the
form of the chain of mappings

(11)

The first three links in this chain, “phenomenon 
template  input excitation,” are determined by the
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properties of the environment, the fourth link is the lin-
ear transformation

(12)

of the input excitation (this transformation is deter-
mined by the conductivity of network (9)), and the fifth
link is the terminal state

(13)

obtained by applying the componentwise operation

(14)

On the whole, chain of transformations (11)
defines a nonlinear operator mapping the space of states
{–1, +1}

 

N

 

 of the network into itself. We consider this
chain as a neural-network recognizing device specified
by quintuple (10). This chain is assigned the probability
of recognition error

(15)

where

(16)

Here, 

 

N

 

+

 

 is the number of +1 in the sequence 

 

t

 

N

 

 and 

 

N

 

–

 

 

 

N

 

 – 

 

N

 

+

 

.
Treating quintuple (10) as a function of 

 

N

 

, we intro-
duce the notion of effectiveness of scheme (11).

 

Definition 1.

 

 We say that the neural-network recog-
nizing device determined by quintuple (10) is effective if

(17)

Thus, the effectiveness of a neural network is under-
stood as the capability to identify observations with
given templates. In this sense, the probability of correct
identification is a measure of the ability of the network
to make associative decisions.

The conjecture that neural networks can manifest
elements of associative behavior [4] is confirmed by the
example of Hopfield networks [2], which have the spe-
cial feature: their conductivity matrices are determined
by the template matrices according to

(18)

where 

 

I

 

 is the identity 

 

N

 

 

 

×

 

 

 

N

 

 matrix and the prime
denotes transposition.

 

Definition 2.

 

 Suppose that a template matrix of
form (9) is given. A neural network of form (3) whose

yN xm
NθN( )C= RN∈

yNsgn xN 1– +1,{ }N∈=

ynsgn
+1 yn 0>,

1– yn 0≤,



=

Per N( ) Per N  M  C  B  p;;;;( )=

=  M 1– p tN( )χ xN C( ) xm
N≠{ }

t
N

∑
m 1=

M

∑

xN C( ) xm
NtN( )C, p tN( ) 1 p–( )N

+

pN
–

= =

=̂

inf Per N( )
N ∞→
lim 0=

C B'B I–=

conductivity matrix (4) is determined by the template
matrix according to (18) is called a Hopfield network.

Since the matrix of conductivities is fixed, a Hopfield
network is determined by the quadruple

(19)

Recognizing device (11) based on a Hopfield network
coincides formally with the scheme for a noise-resis-
tant transmission of M messages through a binary chan-
nel without memory with multiplicative noise (7). In
this scheme, template matrix (9) plays the role of a code
book of size M, the third link in (11) corresponds to the
output of the transmission channel, and the fourth and
fifth links corespond to the two-stage coding by the
scheme

(20)

Accordingly, the probability of recognition error is
understood as the probability of decoding error. To esti-
mate the latter, it is natural to apply the method of aver-
aging over the ensemble of code books, i.e., the ensem-
ble of template matrices (9). The consistency of such an
approach to neural networks is shown in [3, 5]. In this
work, we use the method of averaging over ensemble
based on the Chebyshev-Chernov method for estimat-
ing large deviation probabilities, which makes the
proof rigorous and indicates the possibility of its fur-
ther generalization.

Let

(21)

be a random uniformly distributed M × N matrix, and let

(22)

be the mean probability of recognition error in the
Hopfield network generated by random matrix (21).

The main result of this work is the following theorem.
Theorem (on the effectiveness of the randomized

Hopfield network). For arbitrary integer N ≥ 1 and
M ≤ 1 and any p such that 0 ≤ p ≤ 1/2, the mean recog-
nition error over the ensemble of templates in the
Hopfield network satisfies the inequality

(23)

To simplify the expression, we have omitted the factor
[1 + o(1)] (o(1)  0 as M  ∞ [sign: infinity]) in
the exponent. The results of a numerical experiment show

N M B p, , ,( )

1– +1,{ }N RN 1– +1,{ }N

R
β1

N

βM
N

, β 1– +1,{ }N∈= …

Per N ; M; R; p( )

=  M 1– p tn( )χ xN RN( ) βN={ }
t
N

∑
m 1=

M

∑

Per N 1+ ; M 1+ ; R; p( ) Ne
N

2M
-------- 1 2 p–( )2–

≤



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 11      No. 1      2001

ON RECOGNITION CAPABILITY OF HOPFIELD NETWORKS 49

that, at N ≥ 100, the strict inequality sign can be used in
(23) with a high accuracy (the error is less than 1%).
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