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Abstract

The paper treats the isaue of pattern remgnition training in terms of Hopfield associative memory
(HAM). The onventional randomization technique is used to determine the exponential extremity of HAM
recognition error. The extremity exponent is considered as a function of the training process In training, the
exponent is giown to rise from  (1-2p)* to (1-2p)> where p isthe aror coefficient at the output of the binary
channel of observation (0<p<1/2). The HAM capacity growsin the same way.

1. Introduction

The neural model of HAM [1,2] interests researchers as one of possble approaches to explaining the
phenomenon of determined behavior observed in initially chaotic neural structures [4-10].

The paper considers the Hopfield model as a reaognition arrangement which can compare externa
events and place similar patterns to the same memory segment. Asaume that M equal-probability events
numbered as m=1,2,... M may ocaur in the eternal world. As the number of observations grows, a standard
pattern (i.e. aparticular fixed point in the M-dimensional attribute space @rresponding to the m-th event) begins
to form in the mth memory segment. Correspondingly, the input signal begins asymptotically to look as a
random departure from one of M fixed points, the reagnition processbailing down to the bringing of the input
signal to the original event m. In fact, the Hopfield network is a decoder based on the knowledge of all M fixed
reference points of the attribute space In the next paragraph we will briefly describe the deader’ s construction
and the method of deriving the upper limit of decoding (recognition) error probability. However, the way
reference patterns devel op and its mathematical essence are the questionsto be answered. At present, adaptation
of the Hopfield network to the external world is rather hard to describe in full. Here we @nstrict ourselves to
simple mnsideration of a single input event, which corresponds to the first step in the formation of neural net
interconnedions. This alows us to compare the initial working parameters of Hopfield network to its
characteristics in the asymptotically stable mode of recognition.

The further description is given in terms of the random coding theory, which permits us to conned
problems of neural networks with isaues of noise-prodf coding studied in the field of probabili stic information
theory. In the emputations that follow we rely maostly on the technique developed in papers [11-13], which
show that from the mathematical point of view, the recognition error probebility for the randomized Hopfield
model can be determined using the method of large deviation probabilit y evaluation, which, in turn, is based on
Chebyshev-Chernov exponential estimates[14].



2. Mean praobability of recognition error
We consider adevicethat isdesigned for recognizing M equally probabl e events and can be represented

asafivelink chain:
m-»Xm—>ym—>HAM—>7m—>nN1 (1)

where mis the event number, x, is the reference attribute vector of the m-th event, y, is the apparent attribute

vector (vector xn, distorted in the observation channel), and Y,,is the output signal. In (1) we use vectors

notations:
X = (X5 X050 X, ) O {141 2
Y =(X,,0,,00+,%,,0,) O{=1+1}" (3)
Voo = (%00, %,,8,) O{-1L+1}" @

where 0 =(6,,---,0y) isthe vector of multiplicative noise with N independent identically distributed random

components;
o -1,
0, =0 P os<ps<l , iOLN 5)
o +L 1-p

Parameter p sets the area around reference point X, where observations y,, experience scattering. The

Hopfidd neural network receives input vector yy, and reduces the noise level in the observation channel so that
the output signal takes form (4) where 0 :(51,---,5N) is the residual noise with much lower component
intensity Pr {gl =-1}<<p, Oi0LN.Hereinteger MOL,M denotes a final decision the recognition
device (1) comesto.

Now let us evaluate the decoding error P = Pr(iii # m). Let B be a MxN matrix whose rows are

reference points of the attribute space:

E[xn Xy, Xy E
B = M2 Xa Yov [ ©)
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Papers [11, 12] show that averaged over the set of al equal-probability matrixes of form (6), the

component intensity of residual noise (i.e. the probability of erroneous recognition of a particular i-th component

of theinput vector P, = P(N,M,p)) meets the following estimate:

P=Prf =-l}< e™ 0iOLN 7



where
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Thisway, recognition error probability P in the randomized Hopfield model (i.e. the probahility of output vector

Y, differing from the reference vector xn, by at least one of N attributes) is given by expression:
_ N [ 0 ¥~ — ~ N
PEPr{ymixm}:PrEU(Hi =—1)DSZ Prio. =-1; =3 7, (10)
i=1 O '
which, in view of (7), can be written as
P < Ne™ (11)

Below we dwell on those points of the derivation of estimation (7) that will help usin the following discourse.
We consider a conventional model of Hopfiedld memory with a symmetric interconnection matrix whose
diagonal dements are set equal to zero. Given matrix B thei-th component of the output vector (4) is defined as:

ymi _SIgn z ym]

ion & O-1, €<0 12
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where T is the interconnedion matrix of the neural network, I isthe unit matrix, and sign is the component
threshold operation. The aror probability for the i-th component of the m-th output vedor is

P =Pr Dsngn @Z i Y Bt X, D (13

Omitting a few intermediate transformations[12,13] and regarding (12), we an show that conditi on (13) can be

rewritten in the form:

N N M |:|
P<Prp) o + 0 x, x, x, x, <0 (14)
L j ;;ﬂ T y 0

Note that (14) could have been expressed as a strict equality with function sign in (14) defined more carefully
(by observing the complete symmetry around zero).



Further considerations are based on assumption that all e ements of matrix (6) areindependent and takes
+1 with equal probabilities. We also estimate the probability in the right side of equation (14) using the
conventional Chebyshev-Chernov technique [14]. For simplicity, we substitute M and N for M-1and N-1in all

expressions that follows. In addition, we assume that x.; = -1. Since quantities X,; in the double sum of (14) are

statistically independent, so are quantities ¢, =0 x,x,x,x, . There are MN of such statistically

independent quantities ¢, in all, each of them taking +1 with equal probabilities.

Let usreplacethetripleindex of ¢, by asingleindex (mnj — k)k [11,MN . Then expression (14)

take the form:
N L
P <Pr aﬁgzzeﬁ (15)
= /L
Asshown in[14], foranyz=0
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where the bar denotes averaging over all statistically independent variables €, and 8. Hence we can evaluate the

upper limit of component recognition error as.

cy e =
P <min %lg [pez +(1-ple~ ]D (17
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It is easy to show that the expression in the curly brackets reaches the minimum when z meets the equation:
pM +1)e® +(1-2p)(M —De* —(1-p)M +1) =0

i.e when

o —(1=2p)M 1)+ /(M —1)* +16Mp(1 - p)
2p(M +1)

(18)

After substituting this expression in (16) and making necessary transformations, we can write the upper limit of

recognition error in form (7). In particular, when p=0, the recognition error takes the smple form [11]:
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Before proceeding to further analysis, note that the above expressions (7) and (11) aretruefor any M>1. Thisisa
principal point in which they differ from other known expressions (see, for example, papers [15-17] and their
references). The exact formulae allow us to determine that known asymptotic expressions are applicable only
when N>>1 and M >> VN. Indeed, if N>>1 and M >> VN, quantity Sin the exponent of (11) can be expanded
into powers around small parameter 1/M. This allows much simpler expressions for error probability P and

memory capacity Max (given Prgy):

0 N(@1-2p)?C
o ( p)[

P< Nexp
8 2M E

(20)

where

_ N(@1-2p)?

™ T 2In(N/ Py ) (21)

Mmax should be understood in the following way: P<P.. if M<Mua , i.e. the recognition error does not
exceed the given level P, if the number of stored patterns M is not greater than the upper limit My -
It isalso important to consider the case when input vectors suffer regular distortions (noise):

>0, =0-pN (22)

where p = const <1 isa(non-random) quantity determined by the data recording/transfer system’s flaws. For
example, expresson (22) can describe drcumstances when the sign of the input signal inverts in particular
channels (the number of such channelsis p/N ). In this case, expresson (15) for the cmponent error probability

isreplaced by the similar formula:
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with the minimum at
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Substituting this expresson into (23), we get for the recognition error probabilit y:
_ N
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The numerical analysis sows that when the number of patterns gored in HAM is snall (M < VN), the
recognition error grows with the noise mmponent p much quicker than it does in the @se of stochastic
multi pli cative noise described by (7)-(9). However, when M>>VN>>1 (asymptotic limit), this differenceisnot so
significant. Indedl, if we expand (25) in series on small parameter M, the epresson for the recognition

error P = ZR (after summation over all components) takes the form

O N1-p)*C

PSNexpD-Q[ (26)
o 2M C

which differs from that for random multi pli cative noise (20) in substitution of p for 2p. In other words, regular

error in the observation channdl is two times more dfedive than random multi pli cative noise.

3. Adaptation process

The previous paragraph considered a N-dimensional Hopfield neural network determined by a particul ar
predefined MxN matrix B of referencevedors (6). It was sown that the net’ s resolution power averaged over all
such matrixes is governed by (7). The ability of the Hopfidd network to associate similar events is due to a
spedal arrangement of its interconnedion array. We may suggest that in evolution live neurons acquire the
ability to interact with each other through synapses. However, the determination of interconnedion conductivity
appears a more serious problem: for the network to behave mnscioudy, the emnductivity magnitudes and signs
should match input signals. Asaume again that under external influencealive network acquired the apahility to
change the nductivity of its interconnedions (probebly, very dowly). If this kind of evolution is
physiologically realizable, the subsequent reasoning suggests the posgble quantitative pattern of the process
bringing (by means of dow evolutionary changes) the neural network to ever growing agreement with the
outside world.

Indeed, let us given M abstract concepts represented by vedors x,, (m=1,... M), each of concepts being
defined by its own set of random real events x,(T'f) OLN (k=1,2,...L - o) governed by a particular statistic

distribution with central point x,, and mean deviation p. Then adaptation of the network to the outside world's

events may be regarded as sep-by-step establi shment of interconnedion conductivity magnitudes. Thefirst step

involves the building of conductivity matrix 'I:l formed according to (12) using a set of M vedors

X0 =(eWyx -+ el x ) whereall MxN random quantities ' are distributed in accord with (5), i.e.

ml 7 ml>
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We call the network produced by vectors xﬁ? thefirst-step adaptation network. After observing another external

event, we obtain yet another set of M independently distorted vectors X' = (ex .---,e2)x ), whereall

(2)

MxN random quantities ¢, are independent and distributed similarly to (27). It is apparent that we can unite

samplings xY and x{? and build a joint basis which gives the more reliable second-step adaptation neural
network, etc.

Let us analyze the simplest case when k external events leads to the interconnection matrix taking form
'|: Dka (where 'I:k is the matrix built around the set of vedors xr(,f) ). Simple reasoning suggests that with
the growing number of observations this gep-by-step adaptation resultsin formation of the network based on the

exact knowledge of reference vedors X, , m 1M . Clear that in this siccesson of nets the first-step

adaptation network has the poorest reaogniti on ahility. For this reason, by evaluating the reaogniti on error of this
network we @n get an idea @out the way the neural network hasto go to become a “perfed” Hopfield network.

We emphasize again that this kind of step-by-step training uses observation of real events from the “cloud’ of

random events xfﬁ) Dm (k=1,2,...L — ) governed by a particular statistic distribution with central point

X, » m LM and mean deviation p. However, each time this kind of network has to recognize a particular

vedor y, picked from this “cloud’ in a completdy random way. This means that the input vedor does not
correspond to any of the vedors used in the network’s formation (rather, the probability of such correspondence
isnegligibly low).

Let us repeat the mnsiderations from the previous paragraph with resped to the network built in the

result of single observation of veaors XS) and, therefore, having the interconnedion matrix T,. Let the input
vedorbe ¥, =(x,,0,,-+-,x,,0,) 0{-1+1}" where 6, 0{-1,+1} is the multi pli cative noise described by

distribution function (27). Our aim is to deade vedor y,,. Following (14), we @an define the crresponding error
probability for the firs-step adaptation network. Then the recognition error probability for the i-th component is
written in the form similar to (14):

J my mi™ mj i Y ni
J#i nFm

N M |:|
Pr{6,=-1}<Pr g ;ZB el < _ZZx x,.x,x, elele)0 1 (28)
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In the randomized scheme where all dements of the reference matrix B are supposed independent and to take
values By, {-1,+1} with probebility %, set {B} absorbs bath {8"} and {e"}. Therefore, the probehility
given in the right side of (28) differs from the probability given in theright side of (14) only in that the principal

random variable e,(; 0, ; hasa“less $iarp” distribution function as compared to (5):
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Let us precise the mathematical sense of the last expression. The observations {an" )} (k=1,2,...L - o)
are distributed around their common center X, with adeviation rate p . Thefirst step of the learning process
proceeds from the real observation XS) = Xmer(ﬁ). Note that observation ir(nl) = X,,0 presented for
recognition, is randomly taken from the same ensemble independently of XS) = Xmer(nl) . Here components of
vector @ are distributed as shown in (5). Then alittle thought shows that i,(nl) is distributed around XS) as

X® = x_#n where components of thevector n are 17, =e’8, ,i 01, N . Thus

n=H -1 2p(-p)=p,
'O tL (A-p)y+p’=El-p,
as shown in (29).

Let us compare (28) and (14). Asit was mentioned in the final section of paragraph 2, the randomized
Hopfidd network that uses the exact knowledge of randomly chosen matrix B hasresidual noise whose intensity
isafunction of parameter p meeting inequality (7). Applying the same randomization technique to matrix B with
due regard to distortions { €}, we obtain the same expression for the residual noise intensity asin (7) except that
we should take the intensity of effective noise pe rather than p. Similarly, using the Chebyshev-Chernov
technique, we obtain formulae (7)-(21) in which substitution p - p. should be made. In particular, for M>>1 we

have the following formulafor estimating the recognition error:

0 Na-2p)*C
= ( p)[

P< Nexp
B 2M £

(30)

which istruewhen M <M, where M isthemaximal capacity of HAM at which the recognition error

max ! X

does not exceed the predefined limit £

_ N@-2p)*

™ 2In(N/ Py ) (1)

We see that formulae (30)-(31) differ from (20) and (21) by a stronger dependence on p. In particular,
the memory capacity of a poorly learnt Hopfield network falls with p considerably faster than that of a well
trained network described by (21).

Parameter 0p = p, — p = p(1—2p) tells us to what extent the “observation channel” improves in

the Hopfield model with its adaptation to the outside world's conditions. Fig.1 shows that in adaptation parabola
p=2p(1-p) changes into straight line pe = p. Simple analysis shows that the amplitude of effective noise
decreases (pe— p) with the growing number of observations. The recognition error also decreases, reaching the
value (20) for the net trained by abstract images when k - 0. The numerical experiment (N=50+200, M=10+20,



p=0+0.25) shows that just a few
training steps (kCb-7) make this 0.6
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The curves are drawn for the number of training steps k=1,3,10

at N=256, M=26.
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