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 Abstract 

 The paper treats the issue of pattern recognition training in terms of Hopfield associative memory 

(HAM). The conventional randomization technique is used to determine the exponential extremity of HAM 

recognition error. The extremity exponent is considered as a function of the training process. In training, the 

exponent is shown to rise from   (1-2p)4  to (1-2p)2  where p is the error coeff icient at the output of the binary 

channel of observation (0≤p≤1/2). The HAM capacity grows in the same way. 

 

1. Introduction 

The neural model of HAM [1,2] interests researchers as one of possible approaches to explaining the 

phenomenon of determined behavior observed in initiall y chaotic neural structures [4-10]. 

The paper considers the Hopfield model as a recognition arrangement which can compare external 

events and place similar patterns to the same memory segment. Assume that M equal-probabilit y events 

numbered as m=1,2,...,M may occur in the external world. As the number of observations grows, a standard 

pattern (i.e. a particular fixed point in the M-dimensional attribute space corresponding to the m-th event) begins 

to form in the m-th memory segment. Correspondingly, the input signal begins asymptoticall y to look as a 

random departure from one of M fixed points, the recognition process boili ng down to the bringing of the input 

signal to the original event m. In fact, the Hopfield network is a decoder based on the knowledge of all M fixed 

reference points of the attribute space. In the next paragraph we will briefly describe the decoder’s construction 

and the method of deriving the upper limit of decoding (recognition) error probabilit y. However, the way 

reference patterns develop and its mathematical essence are the questions to be answered. At present, adaptation 

of the Hopfield network to the external world is rather hard to describe in full . Here we constrict ourselves to 

simple consideration of a single input event, which corresponds to the first step in the formation of neural net 

interconnections. This allows us to compare the initial working parameters of Hopfield network to its 

characteristics in the asymptoticall y stable mode of recognition. 

The further description is given in terms of the random coding theory, which permits us to connect 

problems of neural networks with issues of noise-proof coding studied in the field of probabili stic information 

theory. In the computations that follow we rely mostly on the technique developed in papers [11-13], which 

show that from the mathematical point of view, the recognition error probabilit y for the randomized Hopfield 

model can be determined using the method of large deviation probabilit y evaluation, which, in turn, is based on 

Chebyshev-Chernov exponential estimates [14]. 
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2. Mean probability of recognition error 

We consider a device that is designed for recognizing M equally probable events and can be represented 

as a five-link chain: 

  ������� � �� →→→→→ mm yyx  (1) 

where m is the event number, xm is the reference attribute vector of the m-th event, ym is the apparent attribute 

vector (vector xm distorted in the observation channel), and my� is the output signal. In (1) we use vectors 

notations: 
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 Parameter p sets the area around reference point xm where observations ym experience scattering. The 

Hopfield neural network receives input vector ym and reduces the noise level in the observation channel so that 

the output signal takes form (4) where )
~
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 is the residual noise with much lower component 

intensity <=>? 8 @A@BACD
∈∀<<−=Pr . Here integer Mm ,~ E∈  denotes a final decision the recognition 

device (1) comes to. 

 Now let us evaluate the decoding error  FGHJI K LLM
≠≡ . Let  B  be a M×N matrix whose rows are 

reference points of the attribute space: 
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 Papers [11, 12] show that averaged over the set of all equal-probability matrixes of form (6), the 

component intensity of residual noise (i.e. the probability of erroneous recognition of a particular i-th component 

of the input vector U V�W XYW Z\[]] ^^
= ) meets the following estimate: 

  _ `aa bc −≤−=≡ defg θPr ,  hi jk∈∀  (7) 
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where  

  ��� ���� �� 	� 	� � 
�������
−+−+−+=  (8) 

  ����
���� �������� ��� �

−
−+−+−−−

= �� �� �����
 (9) 

 

This way, recognition error probability P in the randomized Hopfield model (i.e. the probability of output vector 

�y
�

 differing from the reference vector xm by at least one of N attributes) is given by expression: 
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which, in view of (7), can be written as 

  ( )*,+- −≤  (11) 

Below we dwell on those points of the derivation of estimation (7) that will help us in the following discourse. 

We consider a conventional model of Hopfield memory with a symmetric interconnection matrix whose 

diagonal elements are set equal to zero. Given matrix B the i-th component of the output vector (4) is defined as: 
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where T̂  is the interconnection matrix of the neural network, Î  is the unit matrix, and sign is the component 

threshold operation. The error probabilit y for the i-th component of the m-th output vector is 
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Omitting a few intermediate transformations [12 ,13] and regarding (12), we can show that condition (13) can be 

rewritten in the form: 
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Note that (14) could have been expressed as a strict equality with function sign in (14) defined more carefully 

(by observing the complete symmetry around zero). 
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 Further considerations are based on assumption that all elements of matrix (6) are independent and takes 

±1 with equal probabilities. We also estimate the probability in the right side of equation (14) using the 

conventional Chebyshev-Chernov technique [14]. For simplicity, we substitute M and N  for  M-1 and N-1 in all 

expressions that follows. In addition, we assume that xmi = -1. Since quantities xnj in the double sum of (14) are 

statistically independent, so are quantities � �� �� �� ��� � � ������
= . There are MN of such statistically 

independent quantities � � 	�
 in all, each of them taking  ±1 with equal probabilities. 

 Let us replace the triple index of � � 	�
 by a single index ( 
�� � → ) ���� ��

∈ . Then expression (14) 

take the form: 
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 As shown in [14], for any z ≥ 0 
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where the bar denotes averaging over all statistically independent variables <= and θi. Hence we can evaluate the 

upper limit of component recognition error as:  
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It is easy to show that the expression in the curly brackets reaches the minimum when z meets the equation: 

  EFGF HGHFGF HIGHFGH JK
=+−−−−++ LMNLMNLM OO  

i.e. when 
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After substituting this expression in (16) and making necessary transformations, we can write the upper limit of 

recognition error in form (7). In particular, when p=0, the recognition error takes the simple form [11]: 
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Before proceeding to further analysis, note that the above expressions (7) and (11) are true for any M>1. This is a 

principal point in which they differ from other known expressions (see, for example, papers [15-17] and their 

references). The exact formulae allow us to determine that known asymptotic expressions are applicable only 

when N>>1 and M >> √N.  Indeed, if N>>1 and M >> √N, quantity S in the exponent of (11) can be expanded 

into powers around small parameter 1/M. This allows much simpler expressions for error probability P and 

memory capacity Mmax (given Pmax): 
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where 
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Mmax should be understood in the following way:  P<Pmax  if  M<Mmax  , i.e. the recognition error does not 

exceed the given level  Pmax  if the number of stored patterns M is not greater than the upper limit  Mmax . 

 It is also important to consider the case when input vectors suffer regular distortions (noise): 

  �	
 � ��
−=∑  (22) 

where 
�

<= � ����� ��  is a (non-random) quantity determined by the data recording/transfer system’s flaws. For 

example, expression (22) can describe circumstances when the sign of the input signal inverts in particular 

channels (the number of such channels is �� ). In this case, expression (15) for the component error probabilit y 

is replaced by the similar formula: 
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Substituting this expression into (23), we get for the recognition error probabilit y: 
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 The numerical analysis shows that when the number of patterns stored in HAM is small (M < √N), the 

recognition error grows with the noise component 

�
 much quicker than it does in the case of stochastic 

multipli cative noise described by (7)-(9). However, when M>>√N>>1 (asymptotic limit ), this difference is not so 

significant. Indeed, if we expand (25) in series on small parameter 
�−�
,  the expression for the recognition 

error ∑= �
 (after summation over all components) takes the form 

  






 −−≤ �
��� � ���� ��� �

 (26) 

which differs from that for random multipli cative noise (20) in substitution of p for 2p. In other words, regular 

error in the observation channel is two times more effective than random multipli cative noise. 

 

 3. Adaptation process 

 The previous paragraph considered a N-dimensional Hopfield neural network determined by a particular 

predefined MxN matrix B of reference vectors (6). It was shown that the net’s resolution power averaged over all 

such matrixes is governed by (7). The abilit y of the Hopfield network to associate similar events is due to a 

special arrangement of its interconnection array. We may suggest that in evolution li ve neurons acquire the 

abilit y to interact with each other through synapses. However, the determination of interconnection conductivity 

appears a more serious problem: for the network to behave consciously, the conductivity magnitudes and signs 

should match input signals. Assume again that under external influence a li ve network acquired the capabilit y to 

change the conductivity of its interconnections (probably, very slowly). If this kind of evolution is 

physiologicall y reali zable, the subsequent reasoning suggests the possible quantitative pattern of the process 

bringing (by means of slow evolutionary changes) the neural network to ever growing agreement with the 

outside world. 

 Indeed, let us given M abstract concepts represented by vectors xm (m=1,...,M), each of concepts being 

defined by its own set of random real events Nk
m ,1)( ∈x  (k=1,2,...L→∞) governed by a particular statistic 

distribution with central point xm and mean deviation p. Then adaptation of the network to the outside world’s 

events may be regarded as step-by-step establi shment of interconnection conductivity magnitudes. The first step 

involves the building of conductivity matrix 1T̂  formed according to (12) using a set of M vectors 

���� ������� ���� � 	� 	��� ���� �=x  where all M×N random quantities 
���� ��  are distributed in accord with (5), i.e. 
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We call the network produced by vectors )1(
mx  the first-step adaptation network. After observing another external 

event, we obtain yet another set of M independently distorted vectors 
���� ������� ���� � �� ���� ���� �=x , where all 

M×N random quantities 
���� ��  are independent and distributed similarly to (27). It is apparent that we can unite 

samplings )1(
mx  and )2(

mx  and build a joint basis which gives the more reliable second-step adaptation neural 

network, etc. 

 Let us analyze the simplest case when k external events leads to the interconnection matrix taking form 

T� ∼∑ kT�  (where kT̂  is the matrix built around the set of vectors )(k
mx ). Simple reasoning suggests that with 

the growing number of observations this step-by-step adaptation results in formation of the network based on the 

exact knowledge of reference vectors �� ��� ∈mx . Clear that in this succession of nets the first-step 

adaptation network has the poorest recognition abilit y. For this reason, by evaluating the recognition error of this 

network we can get an idea about the way the neural network has to go to become a “perfect” Hopfield network. 

We emphasize again that this kind of step-by-step training uses observation of real events from the “cloud” of 

random events  Nk
m ,1)( ∈x  (k=1,2,...L→∞) governed by a particular statistic distribution with central point 

�� ��� ∈mx  and mean deviation p. However, each time this kind of network has to recognize a particular 

vector ym picked from this “cloud” in a completely random way. This means that the input vector does not 

correspond to any of the vectors used in the network’s formation (rather, the probabilit y of such correspondence 

is negligibly low). 

 Let us repeat the considerations from the previous paragraph with respect to the network built in the 

result of single observation of vectors ����x  and, therefore, having the interconnection matrix T1. Let the input 

vector be   �  � !"!"# $���%&���� +−∈= 'my  where (! ∈{ -1,+1} is the multipli cative noise described by 

distribution function (27). Our aim is to decode vector ym. Following (14), we can define the corresponding error 

probabilit y for the firs-step adaptation network. Then the recognition error probabilit y for the i-th component is 

written in the form similar to (14): 

  { }
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≠ ≠ ≠
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()
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�+ )� (+ (+ )+ )+ (� )� (� ))( ,,,"""",! θθ �������������
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In the randomized scheme where all elements of the reference matrix B are supposed independent and to take 

values Bmn ∈{ -1,+1} with probabilit y ½, set { B} absorbs both 
$%  !  and 

$%  , . Therefore, the probabilit y 

given in the right side of (28) differs from the probabilit y given in the right side of (14) only in that the principal 

random variable )-+ ) !��
e  has a “ less sharp” distribution function as compared to (5): 
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 Let us precise the mathematical sense of the last expression. The observations { }�� �x  (k=1,2,...L→∞) 

are distributed around their common center �x  with a deviation rate  p . The first step of the learning process 

proceeds from the real observation  (1)
mm exx =

���� . Note that observation �xx m
(1)
m =

�
 presented for 

recognition, is randomly taken from the same ensemble independently of  (1)
mm exx =

���� . Here components of 

vector  �  are distributed as shown in (5). Then a little thought shows that (1)
mx

�
 is distributed around 

����x  as 

�xx m
(1)
m =

�
 where components of the vector  �  are ���� �� �� ��� !"

∈= θ  . Thus 
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as shown in (29). 

 Let us compare (28) and (14). As it was mentioned in the final section of paragraph 2, the randomized 

Hopfield network that uses the exact knowledge of randomly chosen matrix B has residual noise whose intensity 

is a function of parameter p meeting inequality (7). Applying the same randomization technique to matrix B with 

due regard to distortions {e}, we obtain the same expression for the residual noise intensity as in (7) except that 

we should take the intensity of effective noise pe rather than p. Similarly, using the Chebyshev-Chernov 

technique, we obtain formulae (7)-(21) in which substitution p→pe should be made. In particular, for M>>1 we 

have the following formula for estimating the recognition error: 
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which is true when ) * +,,
< , where ) * +,

 is the maximal capacity of HAM at which the recognition error 

does not exceed the predefined limit ) * +-
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)/ln(2

)21(

max

4
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pN
M
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 We see that formulae (30)-(31) differ from (20) and (21) by a stronger dependence on p. In particular, 

the memory capacity of a poorly learnt Hopfield network falls with p considerably faster than that of a well 

trained network described by (21). 

 Parameter ./01 22223 4 5
−=−≡  tells us to what extent the “observation channel” improves in 

the Hopfield model with its adaptation to the outside world’s conditions. Fig.1 shows that in adaptation parabola 

pe=2p(1-p) changes into straight line pe = p. Simple analysis shows that the amplitude of effective noise 

decreases (pe→p) with the growing number of observations. The recognition error also decreases, reaching the 

value (20) for the net trained by abstract images when k→∞. The numerical experiment (N=50÷200, M=10÷20, 
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p=0÷0.25) shows that just a few 

training steps (k∼5-7) make this 

difference negligibly small. 

Dependence of the recognition 

error on p is given in Fig.2. In the 

figure the curves for k>10 almost 

merge with the curve for k=10. 

 

 4. Conclusion 

 In this paper, we use the 

standard large-deviation technique 

to estimate the error probability at 

the output of the Hopfield 

associative memory. The exponent 

of the error probability is 

considered as a function of the 

learning process which looks like a 

process of adaptation to the signals 

observed through a noisy channel. 

We managed to show that during 

the adaptation process, the error 

probability exponent grows from ����� �
−  up to ����� �

−  

where �
��

≤≤
�

  denotes the 

error rate at the output of the binary 

observation channel. 
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