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The basic equation of the augmented plane waves method was derived
in the spherical harmonics representation. It is possible to subdivide the
structural and the potential parts of this equation. A new form of the
Kohn-Korringa-Rostoker-equation with the analogous properties was

received.

1. INTRODUCTION

THE MAIN tool used in the present work is a
pseudoinverse matrix. In detail its theory is outlined,
e.g.in[1]. All the required information is given briefly
in the Appendix. Here we will formulate only several
key aspects necessary for the understanding of this
paper’s main text.

The pseudoinverse matrix is called a matrix inverse
to a degenerated matrix, i.e. to that which transforms
some subspace of a space under transformation into
zero. A classic example of a degenerated matrix is a
rectangular matrix having a number of rows p less
than a number of columns . If the matrix rank equals
p (it means that its rows, considered as n-dimensional
vectors, are linearly independent), a space R" is
transformed by the matrix into a space R’ and,
consequently, some subspace of n-p dimension is
transformed into zero. This subspace is referred
to as a kernel of a matrix A4, Ker 4. In the Appendix
it shown that Ker 4 coincides with the orthogonal
complementation to the subspace span on p row-
vectors of the matrix 4. The latter subspace is called
the carrier of the matrix 4, Car 4. No vectors of
Car A are transformed into zero by the matrix 4, i.e.
the matrix A realizes a one-valued transformation of
Car A4 onto R’. In this case it is clear that a transfor-
mation inverse to A4 is defined naturally as a transfor-
mation acting from R’ to Car 4. In the Appendix it is
shown the way to build such a matrix. We will denote
it A~', in order to stress that a pseudoinverse matrix
— when operated carefully — is the true object of the
matrix theory the same as an ordinary inverse matrix.
Let us outline some pseudoinverse matrix properties
which will be used in what follows.

1. For rectangular matrices appearing in band
calculation n is the number or plane waves used (or
augmented plane waves), while p = [2,, where

l.x — 1 is the maximal value of azimuth quantum
number /. Typically in band calculations p < » or
even p < n and p rows of the matrix 4 are linearly
independent.

2. If A and B are rectangular matrices, 4~' and
B~! pseudoinverse matrices, then

(A7 = @', (487" B4

where, as always, 4* is the matrix transposed and
complex conjugated with respect to the matrix A4.

3. Vectors of a space R" of a greater dimension
will be designated by symbols u, t, . . . while vectors of
a space R’ of a lesser dimension by symbolsf, g, . . . .
In this case, if ue Car 4, then Au = f # 0 and
u = A 'f; if, however, a vector u does not belong to
the matrix A4 carrier, such vector cannot be represented
in the form 4~'f.

In Section 2 the basic equation of the augmented
plane waves (APW) [2] is reformulated from the
representation of quasiwave vectors (k-represen-
tation) into the representation of spherical harmonics
(I-representation). The possible consequences of a
reformulation are discussed. In Section 4 the KKR-
method [3] of band calculations is analyzed anal-
ogously. The main result here is the new form of the
basic equation of the KK R-method in /-representation.

2. THE APW-METHOD

In the frame of the APW-method the main prob-
lem is to find a value of parametric energy E, that
satisfies the equation

det | M, + Fy(E) — EJ,| = 0, (1)
where
J, = 86,Q — 4n el ! iR )

ij

€, is a unit cell volume, R is MT-sphere radius, j, (x)
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is the spherical Bessel function; k; = |k,| = |k; — k|,
k, = k + K;, where k is the reduced wavevector and
K; are reciprocal lattice vectors which distinguish the
augmented plane waves (APW’s); 7, j run from 1 to n.
Then

JM:‘;‘ = (k;, kj)-ffja
FAE) = 4nR*Y (2 + 1)
=0

3)

x (i, ) jik:R) ji (ke R)L(wy), 4)

where P,(i, j) is the Legendre polynomial of the cosine
of the angle between k; and k;,

u/(R, E)
u(R, E)’

is the value of the logarithmic derivative of the sol-
ution u,(r, E) of the radial Schrédinger equation for
r = R; u,and L(4,) depend on the parametric energy
E and the crystal potential.

If E satisfies the determinant equation (1), then it
is eigenenergy of the system. To determine all
eigenenergies, it is necessary to obtain all the solutions
of equation (1) varying E over the examined energy
interval.

It is known, that for every atom in unit cell
one has to account 30-50 APW’s. For instance, the
calculation of a two-atomic compound reduced to a
repeated computation of 100th order determinants. In
addition matrix elements F;(E) has to be recounted
for every energy E. Such a procedure requires a lot of
computer time.

At the same time the KKR-equation is free from
these two drawbacks. In KKR-method one again has
to solve the determinant equation that is analogous to
equation (1). But firstly, the matrix elements of the
KK R-equation are decomposed into the potential and
structural parts. The last one does not depend on E so,
for a given crystal it is obtained only once. And the
potential part, which depends on crystal potential and
E, is calculated quickly and easily. Secondly, the order
of the KKR determinant equation is much lower than
in APW-method: the trial functions in KKR-method
are spherical harmonics Y}, (r), and for every atom in
the unit cell it is sufficient to take 9 or maximum — 16
trial functions, which compares favourably with
30-50 trial functions in APW-method. So, for calcu-
lations of multiatomic crystals KKR-method is
preferable. Pseudoinverse matrix can be used to get in
APW-method equations of the KKR-type.

Let us use the well-known equality

2A4+1 . . gl oA :
P{(laj) = Z“}’Im(t)Y{m(J)s

4 m=—

L(w) = (5)

where Y,,(i) = Y,.(k;) is the /th spherical harmonic
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corresponding to the vector k;. If there are [, terms
insum @ ({ =0,1,.. — 1), then we designate
P =l

Let us introduce a rectangular matrix A:
Apy = 4nRji(k;:R) Y, (D). (6)

There is a double index for rows: / runs from 0 to
l... — 1 and for a fixed / m runs from —ltol;asa
result there are p rows in matrix 4; the index i runs
from 1 to n.

Matrix A acts from R"into R’; the typical n values
are about 100 and the typical p values are about: 10 for
KKR-method and 100 for APW-method. Let us sup-
pose that p < n.

We define a quadratic p x p diagonal matrix
L(E)

Lfm.rm'(E) = 5{1'6mm'L(u.')’

where the diagonal matrix elements are logarithmic
derivatives (5). Then it is easy to see that the expression
(4) can be treated as (i, j)-matrix element of a triple
production:

F/E) = (A*L(E)4);,

where A* is matrix transposed and conjugated to
matrix A. If n x n quadratic matrices J and M with
matrix elements (2) and (3) are introduced the deter-

minantal equation (1) can be rewritten as a vectoral
equation:

[M + A*L(E)A]*u = A-Ju, weR. @)

We have to find such a value of the parameter E that
belongs to the set of eigenvalues of equation N.

The matrix J is nonnegative and, hence, all eigen-
values of equation (7) are real. As soon as the
parameter E value, for which the diagonal matrix
L(E) has been calculated, coincides with one of the
equation (7) eigenvalues, we receive one of the system
eigenenergies. The components of the corresponding
eigenvector u = {u,}} define the wave function. Let
(E, u} be a solution of equation (7). If u e Car A (see
Appendix), then

Au = A 'g.

Multiplying equation (7) by (4%~ = (47")* and
using equation (AS5) we get:

- 'lmax

g+£0, geR, 1=

[(A4%)'MA™' + LE)g = M4¥) VA 'g. 8)
Let as define

A s (AT MY T = (Y )
Then finally we have the vectoral equation

(M + L(E)g = AJg. (10)
and the determinantal equation

det |M + L(E) — EJ| = 0. (n
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Equations (10) and (11) have some advantages over
equations (1) and (7). The first — a comparative sim-
plicity of matrix elements construction: though the
calculation of the matrices M and J is a complicated
problem, they do not depend on E and hence they can
be calculated only once. Matrices M and J are anal-
ogous to the structural part of the KKR-equation
which does not depend either on crystal potential nor
on the energy E. The potential part of the equations is
given by the diagonal matrix L(E) and it is calculated
without any difficulties.

The second important characteristic of equations
(10) and (11), that completes their similarity to the
KKR-type equations, is the p x p dimension [but not
n x n as for equations (1) and (7)].

Here a remark should be made. Equation (11) is
derived from equation (1) using a set of identities, so it
is not at all necessary that equation (11) will give true
results at small /_,,, when it is known that equation (1)
well describes the energy spectrum of the system only at
values of /., about 10. Preliminary calculations with
the empty-lattice test shows that even for /,, = 5-7
precision of the obtained eigenenergies is not sufficient.
Thus, if numerical calculations corroborate that in
equation (11) /., value about 10 has to be used, there
will be no reduction of the dimension of the equation
under consideration. Moreover, the dimension will
increase, e.g. for monoatomic crystal it will increase
from 50 [the number of the usually used APW’s in
equation (1)] to 100 (/2,, = 100).

Our hopes are for linear APW-method (LAPW)
[4]. We think that for this method small /_,, value
about 3-4 can be used because its /-convergence is
better than for APW-method. The LAPW-method
can be reformulated in a [-representation analogously
to what has been done here for APW-method; these
results would be presented in a next publication.

3. A COMMENT

If the eigenvector u in the equation (7) belongs to
the carrier of the matrix A4, then the corresponding
eigenvalue of equation (7) is equal to one of the eigen-
values of the equation (8). There can be such solutions
of the latter equation that the corresponding vector u
would not completely belong to the carrier of the
matrix 4, e.g.:

u = u + u, where u. e Car 4, u, € Ker 4,
(12)

or

= . (13)

It is impossible to express such a vector as 4~ 'g (see
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Appendix) and, hence to transform the equation (7)
into the equation (8).

It is well-known that in the frame of APW based
methods more eigenenergies can be obtained than in the
frame of KKR based methods, i.e. when using as trial
functions a set of spherical harmonics Y,,. Equalities
(12) and (13) only describe, in a vectoral form, the
additional solutions of APW-method. Some special
problems connected with the different number of the
solutions of equations (7) and (11) would be discussed
in a following publication.

4. THE KKR-METHOD

With the use of the pseudoinverse matrices theory
new interesting equations for the KK R-method can be
derived.

Let the well-known determinantal KK R-equation
[3] be the starting point:

m(kR)L(y;) — ni(xR)

det | Ay im + KOy O — = = 0,
i ¥ Ji(kR)L(1;) — j/(kR)

(14)
where k = /E, n;(xR) is spherical Neuman function,
(4mpiD)
A= e
Q, ji(kR)j (kR)
L ji(kiR)jy (ki R) Y, (1) Y, (0)
X K —E
n(xkR)
— KOy Oy ———,
? Ji(kR)

R, j;, L(v), €, Y, and k; were defined in the previous
section. The dimension of the determinant equation
(14)isp x p(p = lpuw)-

Rearranging the terms in equation (14), which
contain the Kroneker symbols, and using the well-
known equality for Wronskian we get

. 5!!'5mm’
R (kR)[L(w) — L(ji(xR))]’

Then the equation (14) can be rewritten as
l:(4n)sz Z Jitk;R) jy U];R) Yig-(l)Y!m(z)
i=1 f="

pa 3”’ 5mm’QD :| ii iir
L(w) — L(ji(xR)) | ji(xR) jr(kR)

det

It is clear that in this equation the factors out of the
square brackets are unsubstantial.

To transform the expression in the square brackets
the rectangular matrix 4 defined previously [see (6)] is
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used and two square diagonal matrices are introduced.
Namely, the p x p dimension L(E):

511’571:”1’

EEmim = Q—OEL(M) — L(ji(xR))], (15)
and the n x » dimension matrix K(E):
K(E) = diag (k! — E) = K* — EI, (16)

where K* = diag (k?), and I, is a unit matrix in the
space R".

Then the latter determinantal equation can be
rewritten as:

det |AK~'(E)A* — L Y(E)| = 0,

or in the vectoral form:
AK""(E)A* = L-'(EX, fePR.

Thus, such a value of E is to be found that the latter
vectoral equation will be satisfied for some vector
fe R. It is clear that the same E will satisfy an
equation with the inverse matrices (or with a pseudo-
inverse matrix if some of the p x p matrices in this
equation is degenerated). Then

(A" 'K(E)A™'f = L(E), fePR, 17)

where 4~ is the matrix pseudoinverse to A.

There are two possibilities now.

The first, we can get a KK R-equation in Ziman’s
form [5]. To do this let us define a nonzero vector
u = A~'f. Multiplying equation (17) by A* and using
the fact that in accordance with equality (A6) the
matrix 4*(4*)~" is an orthogonal projector on the
matrix A carrier Car 4, we can get

KEW = A*L(E)Au,

or in the determinantal form

det |(k} — E)é; — ;—ﬂ R ;:; Q!+ PG )
0 =

(18)

X Ji(kiR)ji(k, R)L(u) — L(ji(xR))]| = 0,

the well-known KKRZ-equation.

Again, as is mentioned in the Comment, only

those solutions of equation (18) whose eigenvectors
belong to the carrier of the matrix 4 would be solu-
tions of equation (17). But, there could be another
solution of equation (18) where eigenvectors have the
form (12) or (13).

The second, starting from the equation (17)
we can choose another course which leads to very
interesting new results.

In fact, the equation (17) contains all the infor-
mation, it is necessary only to rearrange its terms
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taking into account the definition (16). Then the
equation (17) takes the form

[(A*)'K?47" — LE)f = E(AA4%7'f, feR.

(19)

Undoubtedly this equation is of practical interest:
its dimension is p x p and matrices (4*) 'K*4~' and
(AA*)~" do not depend either on the crystal potential
or on the parameter E, hence, for a given crystal they
can be calculated only once; the potential part of the
equation is only the diagonal matrix £(E) and it is
calculated easily.

As a whole the equation (19) has the same struc-
ture as the equation (10). It is rather easy to construct
the matrices in this equation. The most complicated
partis to find out all eigenvalues and eigenvectors of the
small dimensional p x p symmetrical matrix AA*;
this work has to be done only once. The numerical
calculations has to be done to estimate how small
would be p = 2. A small value for [, in equation
(19) is more probable on account of equivalence of the
equations (19) and (14).
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APPENDIX
The pseudo-inverse matrix

A pseudoinverse matrix is a matrix that is inverse
to any degenerate matrix. The most general example
of a degenerate matrix is a rectangular matrix that
transforms a space R" with a dimension # into a space
R’ with a dimension p where n > p:

A = (Aij)’
A: R" — R?,

=1, ..ol d=1, .

!n!
n > p.

Without any restriction of the generality one may
assume that the rank of the matrix 4 is p. Then
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this matrix transforms n linear independent vectors
from any R"-basis into p linear independent vectors
of R? space. Hence, some subspace of the R" space
is transformed into zero. This subspace of the space
R" is called the kernel of the matrix — Ker 4. If
we interpret the rows of the matrix 4 as p vectors of
the space R, it is clear, that these vectors are linear
independent and so the p-dimensions subspace can be
span on these vectors. Then the orthocomplemen-
tation to this subspace is exactly the kernel of the
matrix 4: matrix A would transform all the vectors
from the orthocomplementation (and only these vec-
tors) into zero. The dimension of Ker 4 is equal to
n-p.
The linear subspace spanned on the p row-vectors
of the matrix A is called the carrier of matrix — Car A4:
R' = Ker A @ Car A.

The matrix A transforms the vectors from Car A4
into nonzero vectors of the space R”. It is clear, that
the pseudoinverse matrix to 4 must be defined as the
matrix that transforms R” onto the subspace Car A,
since only in this part of the space R" the one-valued
transformation inverse to 4 can be determined. In the
following we will give the natural definition to a
pseudoinverse matrix and we will mark it as ordinary
inverse matrix — 47",

Let us introduce a matrix 4* that is conjugate
to A. We may obtain it from 4 by transposition
and complex conjugation of all matrix elements:
A} = A;. Then matrix A* is acting from R”in R". We
will show below that actually 4* transforms R’ onto
Car A.

Now we can give the definition of two Hermitian
matrix:

N =
P =

A*A: R" - R",
AA* . R - R,
The matrices N and P are nonnegative. All their eigen-
values are not less than zero. From the well-known
theorem the ranks of matrices N and P are equal to the

rank of 4 and hence are equal to p. It means that all
eigenvalues of matrix P are positive:

f@ e RP,

fxr‘>0, i=1525--'9p9

It follows, then, that matrix 4* acts from R’ onto
Car A:if matrix A* would transform any vector f € R’
into Ker A, then applying matrix 4 to A*f we would
obtain zero, which is impossible.

Only p eigenvalues of matrix N that has » non-
negative eigenvalues, are nonzero. Hence the rest of
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the n-p eigenvalues equal zero exactly:
N9 = gu?, B.>0, i=1,2,...,p,
Boit = Bouz = - = B, = 0, eRrR.
It turns out that foralli = 1,2, ..., p:
@ = B (A
AMD = [feu, (A2)
A0 = Jaf?. (A3)

Indeed multiplying the equality
PEO = AAMO = af®,

by matrix A4* we obtain: A*AA¥MY = o, 4.
Otherwise, the vector A*f® is the eigenvector of
matrix N and, hence, this vector is collinear to one of
the vectors u”’. Then the eigenvalue g; is equal to the
corresponding eigenvalue f,. Since this argumentation
is applicable to all «;, we can numerate the eigenvalues
of matrices P and N in such a way that equality (A1)
would be fulfilled.

Then, || A*f|* = (44*9, f) = «, from where
the equality (A2) follows. If the matrix 4 acts on the
equality (A2), we would obtain the equality (A3). It is
convenient to choose the equality (A3) as the definition
of the pseudoinverse matrix. The natural definition of
the transformation that is inverse to (A3) will be:

i T
o;

A i=1,2...,p

The fact that the sets of the vectors {f’}7, {u”’}? form
the ortho-normalized basis, allows us to write down a
simple expression for the matrix elements A4;' using
the vectors f and u? components:

LT
Uil

A-T]= l—-—"s -=
T

1.2,

(A4)

here u{’(f") is i- (j-) component of the eigenvector
u”(f?). The matrix 4" acts from R’ onto Car 4.
For comparison let us write down the analogous
expression for A%:

P
. - (2
A; = E\/Et“s §
i=1

In those particular cases where the matrix 4 rank
is p, matrix 4" is the same as A* from [1]. To clear
the situation let us show how matrices A" and A* are
related. If V is n x p matrix which columns are p
vectors u®/(a)"> i =1, 2, ..., p, it is easy to see
that A~' = VV*A4* Let us list some easily verified
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equalities: space R’. In the same time:

- - . i
(A7) = (A%)7'4%); = 8y, i=1,2...,p, (47'4), = (A*U4®); = Y ufa®. (A6)
Pl g . (AS) e

. Matrix A'4 (as A*(4*)™") is orthogonal projector
ie. 44™' = (4*)~'4* = [, is a unit matrix in the into Car 4.



