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Abstract. The main properties of the interaction between learning and evolution-

ary optimization are quantitatively analyzed. These properties are the following: 1) 

the genetic assimilation, 2) the hiding effect, 3) the influence of the learning load 

on the interaction between learning and evolution. The genetic assimilation means 

that the acquired features of organisms obtained by means of individual learning 

can become inherited during many generations of Darwinian evolution. The hiding 

effect means that strong learning can inhibit the evolutionary search for the opt i-

mal genotype. The learning load means that the fitness of an organism can be re-

duced due to learning because the learning process needs some energy and time. 

Our analysis is based on the quasispecies model of evolution (Eigen, 1971; Eigen 

& Schuster, 1979). Basing on this model, it is sufficient to consider only single 

significant variable, the distance from the optimum. This ensures the clear quanti-

tative analysis of mechanisms of the interaction between learning and evolution. 

The interaction between learning and evolution is analyzed by means of computer 

simulation. 

Keywords: interaction between learning and evolution, genetic assimilation, hid-

ing effect, learning load. 

Introduction 

Investigations of biologically inspired cognitive architectures use different methods of 

learning and optimizations (Samsonovich, 2012; Krichmar, 2012; Krichmar et al., 

2005; Edelman, 1987; Vernon et al., 2007; Vernon et al., 2016). The current paper 

considers simple methods of learning and evolutionary optimization and the interaction 

between learning and evolution. The mechanisms of the main properties of the consid-

ered interaction are analyzed. 
A number of authors analyzed interactions between learning and evolution by 

means of computer simulations (Belew & Mitchell, 1996; Turney et al., 1996; Hinton 
& Nowlan, 1987; Mayley, 1997; Ackley & Littman, 1992; Red’ko et al., 2005). In 

particular, Hinton and Nowlan (1987) demonstrated that learning can guide an evolu-
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tionary process to find the optimum. Mayley (1997) investigated different aspects of 
the interaction between learning and evolution and demonstrated that the hiding effect 
can take place, if the learning is sufficiently strong. The essence of the hiding effect is 
as follows: if the learning is enough strong to change the phenotype of the organism 

and organisms are selected at the evolution in accordance with the phenotype, then the 
selection can weakly depend on the genotype. The hiding effect significantly reduces 
the role of the genotype at the evolutionary selection, and the genetic assimilation be-
comes less pronounced. 

Mayley (1997) investigated also the influence of the learning load (the cost of 
learning) on the interaction between learning and evolution. The learning load means 

that the process of learning has an additional load for the organism and its fitness is 
reduced under the influence of this load. 

Red’ko et al. (2005) modeled the interaction between learning and evolutionary 
optimization of a neural network control system of autonomous agents. The genetic 
assimilation of the acquired features of agents was observed during several generations 
of evolution. In addition, it was demonstrated that learning could significantly acceler-

ate the process of the evolutionary optimization. However, it was difficult to analyze 
detailed mechanisms of the interaction between learning and evolution in that work, 
because these mechanisms were “hidden” in the dynamics of numerous synaptic 
weights of agent neural networks. 

The current paper uses works (Hinton & Nowlan, 1987; Mayley, 1997) as back-
ground. However, that works used rather complex forms of the genetic algorithm (with 

crossovers), so it was difficult to analyze quantitatively the mechanisms of influence of 
learning on evolutionary optimization. In contrast to works (Hinton & Nowlan, 1987; 
Mayley, 1997), the current article uses the quasispecies model proposed by Manfred 
Eigen (Eigen, 1971; Eigen & Schuster, 1979) and our estimations of the evolutionary 
rate and the efficiency of evolutionary algorithms (Red’ko & Tsoy, 2005, 2006). The 
quasispecies model considers the evolution that is based on selection and mutations of 

organism genotypes (without crossovers) and describes the main properties of the evo-
lutionary process. The use of models and methods of works (Eigen, 1971; Eigen & 
Schuster, 1979; Red’ko & Tsoy, 2005, 2006) allows getting a better understanding of 
the mechanisms of the interaction between learning and evolution. 

The current paper analyzes quantitatively the mechanisms of the following main 
properties of the interaction between learning and evolution: 1) the genetic assimila-

tion, 2) the hiding effect, 3) the role of the learning load at investigated processes of 
learning and evolution. 

A short description of the similar model of the interaction between learning and 
evolution was presented in the work (Red’ko, 2013). In contrast to that short work, the 
current article contains the detailed analysis of interaction between learning and evolu-
tion. Additionally, the current paper analyzes the scheme by Hinton and Nowlan (1987) 

by means of the quasispecies model and characterizes mentioned main properties of the 
interaction between learning and evolution for this scheme. 

The paper is organized as follows. The next section describes our main model. 
Then we describe detailly the results of computer simulation for this model. Further, 
we will analyze the interaction between learning and evolution within the framework of 
the scheme by Hinton and Nowlan (1987) by means of the quasispecies model. Finally, 

we will discuss the obtained results and conclude the paper. The main results of our 
previous estimations of the efficiency of evolutionary algorithms are summarized in 
Appendix. 



 

Description of the main model  

The evolving population of modeled organisms is considered. Similar to Hinton and 

Nowlan (1987), we assume that there is a strong correlation between the genotype and 

the phenotype of the modeled organisms. We assume that the genotype and the pheno-

type of the organism have the same form, namely, they are chains; symbols of both 

chains are equal to 0 or 1. The length of these chains is equal to N. For example, we 

can imply that the genotype encodes a modeled DNA chain, “letters” of which are 

equal to 0 or 1, and the phenotype determines the neural network of organisms, the 

synaptic weights of the neural network are equal to 0 or 1 too. The initial synaptic 

weights (at the birth of the organism) are determined by the genotype (for example, the 

initial synaptic weights can be equal to the genotype symbols). These weights are ad-

justed by means of learning during the organism's life. 
The evolving population consists of n organisms, genotypes of organisms are SGk, 

k = 1,..., n. The organism genotype SGk is a chain of symbols, SGki, i = 1,..., N. We as-
sume that the length of chains N and the number of organisms in the population n are 

large: N, n >> 1. The values N and n do not change in the course of evolution. Symbols 
SGki are equal to 0 or 1. We assume that N is so large that only a small part of possible 
2

N
 genotypes can be presented in a particular population: 2

N
 >> n. Typical values N and 

n in our computer simulations are as follows: N ~ n ~ 100. 
The evolutionary process is a sequence of generations. The new generation is ob-

tained from the old one by means of selection and mutations. Genotypes of organisms 

of the initial generation are random. Organisms inherit the genotypes from their par-
ents, these genotypes do not change during the organism life and are transmitted (with 
small mutations) to their descendants. Mutations are random changes of symbols SGki. 

Phenotypes of organisms SPk are chains of symbols SPki, k = 1,..., n, i = 1,..., N; SPki 
= 0 or 1. The organism receives the genotype at its birth, the phenotype  SPk at this time 
moment is equal to the genotype: SPk(t = 1) = SGk. The lifetime of any organism is 

equal to T. The time is discrete: t = 1,...,T. T is the duration of the generation. The phe-
notype SPk is modified during the organism life by means of learning. 

It is assumed that there is the certain optimal chain SM, which is searched for in 
processes of evolution and learning. Symbols SMi of this chain are also equal to 0 or 1; 
the length of the chain SM is N. For a particular computer simulation, the chain SM is 
fixed; symbols of this chain are chosen randomly. 

Learning is performed by means of the following method of trial and error. Every 
time moment t each symbol of the phenotype SPk of any organism is randomly changed 
to 0 or 1, and if this new symbol SPki coincides with the corresponding symbol SMi of 
the optimal chain SM, then this symbol is fixed in the phenotype SPk, otherwise, the old 
symbol of the phenotype SPk is restored. The probability of the random changing of a 
symbol during learning is equal to pl. So, during learning, the phenotype SPk moves 

towards the optimal chain SM. 
At the end of the generation, the selection of organisms in accordance with their 

fitness takes place. The fitness of k-th organism is determined by the final phenotype 
SPk at the time moment t = T. We denote this chain SFk, i.e. we set SFk = SPk(t = Т). The 
fitness of k-th organism is determined by the Hamming distance ρ = ρ(SFk,SM) between 
the chains SFk and SM: 

 
fk = exp[–βρ(SFk,SM)] + ε ,               (1) 



 

 

where β is the positive parameter, which characterizes the intensity of selection, 0 < ε 

<< 1. The role of the value ε in (1) can be considered as the influence of random factors 

of the environment on the fitness of organisms. 
The selection of organisms into a new generation is made by means of the well-

known method of fitness proportionate selection (or roulette wheel selection). In this 
method, organisms are selected into a new generation probabilistically. The choice of 
an organism into the next generation takes place n times, so the number of organisms in 

the population at all generations is equal to n. The probability of the selection of k-th 
organism into the next generation at a particular choice is equal to 

 





n

j
j

k
k

f

f
q

1

. 

 
Therefore, at any choice, the probability of the selection of a particular organism 

into the next generation is proportional to its fitness. 

Thus, organisms are selected at the end of a generation in accordance with their fi-
nal phenotypes SFk = SPk(t = Т), i.e. in accordance with the final result of learning, 
whereas genotypes SGk (modified by small mutations) are transmitted from parents to 
descendants. 

As descendants of organisms obtain genotypes SGk that organisms received from 
their parents and not phenotypes SPk, the evolutionary process has Darwinian character. 

Additionally, similar to Mayley (1997), we take into account the learning load (the 
cost of learning), namely, we assume that the learning process has a certain burden on 
the organism and the fitness of the organism may be reduced under the influence of the 
load (the learning process needs some energy and time). For this purpose, we consider 
the modified fitness of organisms: 

 

fmk = exp(–αd) {exp[–βρ(SFk,SM)] + ε} ,             (2) 
 

where α is the positive parameter, which takes into account the learning load, d = 

ρ(SGk,SFk) is the Hamming distance between the initial SPk(t = 1) = SGk and the final 

phenotype SPk(t = Т) = SFk of the organism, i.e. the value d characterizes the intensity of 

the whole learning process of the organism during its life. 
It should be noted that since genotypes SGk of the organisms in the initial popula-

tion are random, the average Hamming distance between these chains and the optimal 
one SM is equal to N/2. The chains Sk should overcome this distance at learning and 
evolution in order to reach SM. 

Results of computer simulation 

Scheme and parameters of simulation 

Two modes of operation of the model are consider below: 1) the regime of the evolu-

tion combined with learning, as described above, 2) the regime of “pure evolution”, 



 

that is the evolution without learning, in this case, learning does not occur and SPk = 

SGk. Additionally, the influence of the learning load is analyzed, in this case, the fitness 

of an organism is calculated according to the expression (2). The model is investigated 

by means of computer simulation. 
The parameters of the model at simulation are chosen in such manner that the evo-

lutionary search is effective; the experience of the work (Red’ko & Tsoy, 2005) for the 
case of pure evolution is used at this choice. The fitness of the organisms in that work 
was determined analogously to the expression (1), only the influence of random factors 

was not taken into account (formally this means that the value ε was equal to 0). The 
short summary of the work (Red’ko & Tsoy, 2005) is given in Appendix. 

The choice of parameters for the current simulation is as follows. We believe that 
the length of the chains is sufficiently large: N = 100. We also set β = 1, this corre-
sponds to a sufficiently high intensity of selection, so the selection time is small, thus 
the time of the evolutionary search is determined mainly by the intensity of mutations. 

On the one hand, the intensity of mutations must not be too large, in order to remove 
the possibility of mutational losses of already found good organisms. On the other 
hand, the intensity of mutations must not be too small, in order to ensure the sufficient-
ly intensive mutational search during the evolutionary optimization. Taking this into 
account, we believe that the probability to change any symbol in any chain SGk at one 
generation at mutations is pm = N

 –1
 = 0.01. At this mutation intensity pm approximately 

one symbol in the genotype of any organism is changed at one generation, i.e. during 
one generation, the Hamming distance ρ between genotypes SGk of organisms and the 
optimal chain SM changes on average by 1 by means of mutations. The selection leads 
to a decrease of the distance ρ. Since the intensity of the selection is large and the 
Hamming distance between genotypes SGk in the initial population and the optimal 
chain SM is of the order of N, the whole process of the evolutionary optimization takes 

approximately GT ~ N generations. This estimation of the evolutionary rate is true, if 
the population size is sufficiently large and the fluctuation effects and the neutral selec-
tion of organisms (that is the selection independent on the fitness of organisms) can be 
neglected. To satisfy this condition, it is enough to require that the characteristic time 
(a number of generations) of the neutral selection, which is of the order of the popula-
tion size n (Kimura, 1983; Red’ko & Tsoy, 2005), should be greater or of the order of 

GT, so we believe that n = N (so, n ~ GT ~ N). See also Appendix for more details. 
Thus, the parameters of simulation in accordance with the experience of the work 

(Red’ko &Tsoy, 2005) are chosen as follows: N = 100, β = 1, pm = N 
–1

 = 0.01, n = N = 
100. 

In the current model we also believe that the probability of a random replacement 
of any symbol during learning pl is rather large: pl ~ 1, the number of time moments 

during any generation T is equal to 2 (choice of such parameters pl and T means that 
learning is rather strong), the parameter ε is small: ε = 10

–6
. The majority of simulations 

are carried out at pl = 1, only in one case the value pl is equal to 0.5. 
The results of simulation are averaged over 1000 or 10000 calculations corre-

sponding to different random seeds. This averaging insures good accuracy of simula-
tion; typical errors are smaller than 1-2%. The results of simulation are described be-

low. 



 

Comparison of regimes of pure evolution and evolution combined with learning 

Fig. 1 shows the dependence of the average Hamming distance ρ = ρ(SGk,SM) between 

genotypes SGk of organisms in the population and the optimal chain SM on the genera-

tion number G. The curve 1 characterizes the regime of evolution combined with learn-

ing; the curve 2 characterizes the regime of pure evolution. The dependences are aver-

aged over 1000 calculations. The fitness of organisms is determined by the expression 

(1). We can see that pure evolution without learning (the curve 2) does not optimize 

organisms Sk at all; whereas evolution combined with learning (the curve 1) obviously 

ensures the movement towards the optimal chain SM. Errors of values <ρ> at the plots 

are smaller than 0.3. 
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Fig. 1 The dependence of the average Hamming distance <ρ> = <ρ(SGk,SM)> between genotypes SGk  and the 

optimal chain SM  on the generation number G.  The curve 1 characterizes the regime of evolution 

combined with learning; the curve 2 characterizes the regime of pure evolution. Results are averaged 
over 1000 calculations. 

 
To understand, why the regime of pure evolution does not ensure a decrease of the 

value ρ, let us estimate the value of the fitness (1) in the initial population for this re-
gime. The Hamming distance ρ = ρ(SGk,SM) for initial genotypes is of the order of N/2 

= 50, therefore, exp(–ρ) ~ 10
–22

 and exp(–ρ) << ε. This means that all organisms of the 
population have approximately the same value of the fitness fk ≈ ε. Consequently, the 
evolutionary optimization of genotypes does not occur in the case of pure evolution. 
Thus, the movement towards SM occurs only in the presence of learning; this move-
ment leads to the decrease of the value ρ. A similar influence of learning on the evolu-
tionary optimization (though in another context) was described by Hinton and Nowlan 

(1987). 
Let us consider the effect of the acceleration of the evolutionary process by learn-

ing (the curve 1 in Fig. 1). Analysis of the results of simulations shows that the gradual 
decrease of the values ρ = ρ(SGk,SM) occurs as follows. First, the learning shifts the 
distribution of organisms n(ρ) on the value ρ towards smaller ρ, so the values ρ = 
ρ(SFk,SM) become small enough, such that exp[–ρ(SFk,SM)] is of the order of ε. Conse-

quently, the fitnesses of organisms in the population in accordance with (1) become 
essentially different; so organisms with small values ρ(SFk,SM) are selected into the 
population of the next generation. It is intuitively clear that the genotypes of SGk of 
selected organisms should be rather close to the final phenotypes SFk (obtained as a 



 

result of the learning) of these organisms. Thus, the result of the selection is choosing 
of organisms, which genotypes are also moving to the optimal chain SM. Therefore, 
values ρ = ρ(SGk,SM) in the new population decrease. 

The described mechanism of the genetic assimilation is characterized by Fig. 2, 

which shows the distributions of the number of organisms n(ρ) for given ρ in the popu-
lation for different moments of the first generation. The curve 1 shows the distribution 
n(ρ) for ρ = ρ(SGk,SM) for the initial genotypes of organisms at the beginning of the 
generation. The curve 2 shows the distribution ρ = ρ(SFk,SM) for organisms after the 
learning, but before the selection. The curve 3 shows the distribution ρ = ρ(SFk,SM) for 
organisms, selected in accordance with the fitness (1). The curve 4 shows the distribu-

tion ρ = ρ(SGk,SM) for the genotypes of selected organisms at the end of the generation. 
The genotypes of selected organisms SGk are sufficiently close to the final phenotypes 
of learned and selected organisms SFk, therefore the distribution ρ = ρ(SGk,SM) for geno-
types (the curve 4) moves towards the distribution for final phenotypes SFk (the curve 
3). Similar displacement of the distribution n(ρ) towards smaller values ρ takes place in 
the next generations. Errors of values n(ρ) at the plots are smaller than 0.3. 
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Fig. 2 The distributions n(ρ) in the first generation of evolution for different moments of the generation. The 

curve 1 is the distribution n(ρ) for ρ = ρ(SGk,SM) for the original genotypes before the learning. The 

curve 2 is the distribution n(ρ) for ρ = ρ(SFk,SM) for organisms after the learning, but before the 

selection. The curve 3 is the distribution n(ρ) for ρ = ρ(SFk,SM) for selected organisms. The curve 4 is 
the distribution n(ρ) for ρ = ρ(SGk,SM) for the genotypes of selected organisms at the end of the 

generation. Results are averaged over 10000 calculations. 

 
Such displacement reveals the mechanism of reduction of <ρ>= <ρ(SGk,SM)>  in 

the presence of learning: the selection leads to the genotypes of organisms SGk, which 
are closer to the phenotypes of learned and selected organisms SFk than the initial geno-
types of organisms at the beginning of the generation. Consequently, the transition 

from the curve 1 to the curve 4, i.e. the decrease of values ρ = ρ(SGk,SM) takes place 
during the generation. 

It should be underlined that the decrease of values ρ = ρ(SPk,SM) at the learning 
should be sufficiently large in order to ensure the small role of the parameter ε and the 
significant difference of the fitnesses (1) of organisms after the learning, and therefore, 
the effective selection of organisms with small values ρ(SFk,SM). This selection corre-

sponds to the essential decrease of values ρ at the transition from the curve 2 to the 



 

curve 3 in Fig. 2. It is clear that in order to guarantee the effective operation this mech-
anism, the learning should be enough strong. The other role of the strong learning is 
characterized in the next subsection. 

It should be noted that the displacement of the distribution n(ρ) at the learning in 

the first generation can be estimated as follows. Before the learning, the value 
ρ(SPk,SM) (the number of symbols of phenotype SPk that do not coincide with corre-
sponding symbols of the optimal chain SM) is approximately equal to N/2 = 50. After 
the first step of the learning, approximately a half of non-coinciding symbols are 
changed (pl = 1), so the value ρ(SPk,SM) becomes to be approximately equal to N/4 = 
25. After the second step of the learning (at the end of the generation) the next half of 

non-coinciding symbols are changed, so the value ρ(SPk,SM) diminishes to N/8 = 12.5. 
This is in agreement with the curve 2 in Fig. 2. 

The same mechanism of decreasing the value ρ for the regime of evolution com-
bined with learning is illustrated by Fig. 3. This figure shows the dependence of the 
average distance <ρ> = <ρ(SGk,SM)> between the genotypes of organisms of the popu-
lation SGk  and the optimal chain SM on the generation number G for the moments of the 

beginning of the generations (the curve 1) and for the moments after selection (the 
curve 2). Fig. 3 demonstrates that at the end of the generation (after the selection) the 
average value ρ = ρ(SGk,SM) is clearly decreased as compared with the beginning of the 
generation. The value of this decrease of <ρ> = <ρ(SGk,SM)> is maximal at the first 
generations, whereas the amount of the decrease becomes smaller at the next genera-
tions. 
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Fig. 3 The dependence of <ρ> = <ρ(SGk,SM)> for the genotypes of organisms on the generation number G for 

different moments of generations: for the beginning of the generations (1) and for the end of the 

generations (2). Results are averaged over 10000 calculations. 

 
The described results show that learning can lead to the effective genetic assimila-

tion and to the radical acceleration of the evolutionary search. 

Hiding effect 

Thus, the strong learning can accelerate the evolutionary search. However, the strong 

learning can also prevent a finding of the optimal genotype. The curve 1 in Fig. 1 
shows that at large G the decrease of values <ρ> = <ρ(SGk,SM)> is limited: the final 



 

value <ρ> remains quite large, the asymptotic value <ρ> is approximately equal to 6.2. 
This is due to the fact that at large G (G ~1000) the strong learning (pl = 1, Т = 2) re-
sults in finding the optimal phenotype SPopt = SM independently on the genotype SGk. 
Therefore, at the final stages of the evolutionary process, the genotypes SGk do not 

move towards the optimum SM. So, the hiding effect (Mayley, 1997) is observed. 
Fig. 4 characterizes the mechanism of the hiding effect. This figure represents the 

distributions n(ρ) at the end of the evolutionary process (at G = 2000) for different 
moments of the generation. The results are for the described case of simulation for the 
regime of evolution combined with learning. Fig. 4 shows that the distribution n(ρ) 
after the learning includes organisms, for which ρ(SFk,SM) = 0, i.e. the optimal pheno-

type SPopt = SM is found by means of the learning. Though the selection in accordance 
with values ρ(SFk,SM) occurs, the distance between the initial genotype distribution (the 
curve 1) and the final genotype distribution (the curve 4) is sufficiently small. There-
fore, further reduction of values ρ = ρ(SGk,SM) at the end of the evolutionary process 
does not occur. The hiding effect is confirmed by the fact that at the end of the evolu-
tion the curves (that are shown in Fig. 4) do not shift for successive generations. This 

effect is also consistent with the fact that the value <ρ> = <ρ(SGk,SM)> becomes con-
stant at large G (see the curve 1 in Fig. 1). The distributions n(ρ) for genotypes at the 
beginning of the generation and after the selection (curves 1 and 4 in Fig. 4) differ 
slightly, this is due to mutations that lead to a small increase of values ρ in the begin-
ning of a generation as compared with the distribution after selection. Thus, at the end 
of the evolutionary process, the strong learning results in finding of the optimal pheno-

type; hence a further optimization of genotypes does not occur. 
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Fig. 4 The distributions n(ρ) at the end of the evolutionary process (at G = 2000) for different moments of the 

generation. The curve 1 is the distribution of ρ = ρ(SGk,SM) for the initial genotypes before the 

learning. The curve 2 is the distribution of ρ = ρ(SFk,SM) for organisms after the learning, but before 

the selection. The curve 3 is the distribution of ρ = ρ(SFk,SM) for selected organisms. The curve 4 is the 

distribution of ρ = ρ(SGk,SM) for the genotypes of selected organisms at the end of the generation. 

Results are averaged over 1000 calculations . 

 
The hiding effect can be substantially relaxed by reducing the intensity of learning. 

The dependence of <ρ> = <ρ(SGk,SM)> for genotypes on the generation number G for 



 

the weakened learning (pl = 0.5) is represented in Fig. 5. For this case, the rate of the 
decrease of the value <ρ> = <ρ(SGk,SM)> during the evolutionary process is smaller as 
compared with the previous result (Fig. 1, the curve 1); however, the final value <ρ> = 
<ρ(SGk,SM)> is essentially reduced and becomes approximately equal to 1.4. Conse-

quently, the weakening of the learning leads to the fact that the final phenotype SFk, 
which determines the selection, in the greater degree depends on the genotype SGk; so, 
the selection of organisms having genotypes, which are quite close to SM, takes place. 

The hiding effect can be eliminated in another way: the learning process can be 
turned off at large G. Fig. 6 shows the simulation result, for which the learning is 
turned off at G = 1000. Simulation parameters are the same as for the calculation repre-

sented in Fig. 1 (the curve 1). Turning off the learning results in the sudden decrease of 
the value <ρ> = <ρ(SGk,SM)> immediately after the generation G = 1000, this has the 
following explanation. As at G = 1000, the value <ρ(SGk,SM)> is approximately equal 
to 6, then for this population we have exp(–ρ) ~ 0.001 >> ε, consequently, fitnesses of 
the organisms (calculated according to (1), SFk = SGk) are essentially different. There-
fore, the evolutionary optimization of genotypes is successfully functioning; and the 

evolutionary process leads to the effective finding of the optimal genotype SGopt = SM. 
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Fig. 5 The dependence of <ρ> = <ρ(SGk,SM)> on the generation number G for the case of the weakened 

learning: pl = 0.5 (results are averaged over 1000 calculations); as compared with the case of pl = 1, the 
evolutionary rate is reduced, but genotypes of organisms, which are essentially closer to SM, are found. 
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Fig. 6 The dependence of <ρ> = <ρ(SGk,SM)> on the generation number G; the learning is turned off at G = 

1000, then the evolutionary process leads to the effective finding of the optimal genotype . Results are 
averaged over 1000 calculations. 

 



 

Thus, the mechanism of the hiding effect is analyzed. This effect means that the 
strong leaning prevents a finding of the optimal genotype, as such learning increases 
the chances of finding a good phenotype independently on the genotype of the organ-
ism. In our case, the hiding effect is observed at the end of the evolutionary process. 

Influence of the learning load on the modeled processes 

We also analyzed the influence of the learning load on the modeled processes. For this 

case, the fitness of organisms is determined by the expression (2). The simulation is 

performed for the mentioned parameters (N = n =100, β = 1, pm = 0.01, pl = 1, Т = 2, ε 

=   10
–6

), the value α is equal to 1. The simulation results are represented in Figs. 7, 8.         

Fig. 7 shows the dependence of the average Hamming distance <ρ> = <ρ(SGk,SM)> 

between genotypes SGk and the optimal chain SM on the generation number G. Fig. 8 

shows the distributions n(ρ) of values ρ for different moments of the first generation of 

the evolution. 
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Fig. 7 The dependence of <ρ> = <ρ(SGk,SM)> on the generation number G; the influence of the learning load 

is considered; the fitness of organisms is determined by the expression (2); the decrease of values <ρ> 
is much faster than that of in Fig. 1. Results are averaged over 1000 calculations. 
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Fig. 8 The distributions n(ρ) for different moments of the first generation of evolution; the learning load is 

taken into account; the fitness of organisms is determined by the expression (2). The curve 1 is the 
distribution of ρ = ρ(SGk,SM) for the original genotypes before the learning. The curve 2 is the 

distribution of ρ = ρ(SFk,SM) for organisms after the learning, but before the selection. The curve 3 is 

the distribution of ρ = ρ(SFk,SM) for selected organisms. The curve 4 is the distribution of ρ = ρ(SGk,SM) 

for the genotypes of selected organisms at the end of the generation. Results are averaged over 10000 
calculations. 



 

 
The comparison of Figs. 1, 2 and Figs. 7, 8 shows that the learning load leads to 

the considerable acceleration of the evolutionary search for the optimal chain SM. This 
acceleration is due to the fact that the learning load results in the more strong selection 

of organisms that have small distance ρ(SGk,SFk) between the initial SPk(t = 1) = SGk and 
the final SPk(t = Т) = SFk phenotypes, than for the case of the fitness (1). This form of 
the selection in accordance with the expression (2) leads to the additional minimization 
of changes of phenotypes SPk during the learning process. The distribution 3 in Fig. 8 
has some “extended tail” to the right; this is in accordance with the minimization of 
changes of phenotypes SPk during the learning. 

Fig. 9 represents the distributions n(ρ) at the end of the evolutionary process (at G 
= 200) for different moments of the generation. This figure shows that the optimal gen-
otype SGopt = SM in the considered case is found. 
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Fig. 9 The distributions n(ρ) at the end of evolution (at G = 200) for different moments of the generation; the 

learning load is taken into account; the fitness of organisms is determined by the expression (2). The 
curve 1 is the distribution of ρ = ρ(SGk,SM) for the initial genotypes before the learning. The curve 2 is 

the distribution of ρ = ρ(SFk,SM) for organisms after the learning, but before the selection. The curve 3 

is the distribution of ρ = ρ(SFk,SM) for selected organisms. The curve 4 is the distribution of ρ = 
ρ(SGk,SM) for the genotypes of selected organisms at the end of the generation. Results are averaged 

over 1000 calculations. 

 
It should be underlined that the genetic assimilation for cases of the fitness, which 

is determined by the expression (1) and the expression (2), has the same nature. In both 
cases, genotypes of selected organisms SGk approach to final phenotypes SFk of learned 
and selected organisms. That is in both Fig. 2 and Fig. 8 the curve 4 moves towards the 

curve 3. A significant difference consists only in the fact that the learning load makes 
this movement more evident and more effective. Thus, the learning load leads to more 
effective optimization of genotypes of SGk; and consequently, the evolution process is 
significantly accelerated. Fig. 9 demonstrates that the learning load results in finding of 
the optimal genotype SGopt = SM. The learning load makes the genetic assimilation 
more profound. The hiding effect is absent in this case. 



 

Thus, the computer simulation shows that the genetic assimilation, the hiding ef-
fect, and the significant acceleration of the genetic assimilation and the evolutionary 
process under the influence of the learning load are observed in the current model. 

Some aspects of the considered model are described in next two subsections. 

Probabilistic and deterministic selection 

The considered model uses the probabilistic selection of individuals in accordance with 

their fitness; the method of fitness proportionate selection is used. Therefore, the pres-

ence of the small parameter ε in expressions (1) and (2) leads to the fact that a purely 

evolutionary process did not ensure finding the optimal sequence SM. It is possible to 

use the deterministic selection instead of the probabilistic one. For example, we can 

calculate the fitness of all organisms in a computer program and select into the next 

generation exactly the half of the individuals, which have larger fitness as compared 

with the rest of organisms of the population, and duplicate selected organisms. We 

have executed the simulation for this case of the deterministic selection. The simulation 

showed that in this case, pure evolution leads to finding the optimal genotype SGopt = 

SM; the characteristic time of convergence of the evolutionary process is of the order of 

N generations. However, the deterministic selection implies that the fitness of the indi-

viduals (1) is calculated with great accuracy in a computer program; this is unnatural 

for real biological processes. For the biological processes, it is more natural to suppose 

that the selection has the probabilistic character, as it is assumed above. 

Modeling of Lamarckian evolution 

For completeness of the analysis, we analyze not only Darwinian evolution, as de-

scribed above, but evolution according to Lamarck. In this case, the genotype of the 

offspring is equal to the final phenotype of the parent (slightly modified by mutations). 

Example of simulation in the case of Lamarckian evolution for the fitness (1) and for 

the same parameters as above (N = n =100, β = 1, Pm = 0.01, pl = 1, T = 2, ε = 10
-6

) is 

represented in Fig. 10. 
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Fig. 10 The dependence of the average (in the population) distance <ρ> to the optimal chain SM on the 

generation number G in the Lamarckian evolution case. Results are averaged over 1000 calculations . 

 



 

This figure demonstrates that the optimal chain SM is found very quickly. However, in 

the case of the evolutionary process according to Lamarck, the important question aris-

es about the direct transfer of information from the phenotype to the genotype. For the 

above example, in which the genotype is modeled DNA and the phenotype is coded by 

the synaptic weights of the neural network, this implies that the information is transmit-

ted from the synaptic weights to the chromosome; this is unnatural for biological o r-

ganisms. 

Comparison with the approach by Hinton and Nowlan 

This section uses the approach by Hinton and Nowlan (1987) as well as the qua-

sispecies model (Eigen, 1971; Eigen & Schuster, 1979). We consider the additional 

model that is very similar to the main model described above. The additional model is 

based on the approach by Hinton and Nowlan (1987). Almost all assumptions of the 

additional model are the same as in the main model. In the additional model, we sup-

pose that organisms of the evolving population have genotypes SGk and phenotypes SPk, 

k = 1,..., n. SGk and SPk are chains of symbols, SGki, SPki , i = 1,..., N, N, n >> 1. Symbols 

SGki, SPki are equal to 0 or 1. SPk(t = 1) = SGk, t = 1,...,T. T is the duration of the genera-

tion. There is the certain optimal chain SM (components of which SMi are equal to 0 or 

1, i = 1,..., N), which is searched for in the process of evolution and learning. Learning 

is performed by means of the method of trial and error (as described above). At the end 

of the generation, the selection of organisms in accordance with their fitness takes 

place; the method of fitness proportionate selection is used. 
Only the fitness of organisms in the additional model is defined in another way, as 

follows. 
1) If learning takes place, the fitness of k-th organism is determined by the final 

phenotype SPk at t = T: 
 
fk = exp[–βρ(SFk,SM)] ,              (3a) 
 

where SFk = SPk(t = Т), ρ = ρ(SFk,SM) is the Hamming distance between SFk and SM. 
 

2) If there is no learning, then the fitness is:  
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The additional model has been analyzed by means of computer simulation. All 

simulations have been made for the case, when learning takes place; that is the fitness 
is determined mainly by the expression (3a). Additionally, the influence of the leaning 

load is taken into account. In this case, the fitness is modified: 
 
fmk = exp(–αd) exp[–βρ(SFk,SM)] ,                (4) 
 

where d = ρ(SGk,SFk). 
 



 

The results for the additional model are almost the same as the described results 
for the main model. The genetic assimilation, the hiding effect, and the influence of the 
leaning load are observed in the case of the additional model. 

For example, Fig. 11 shows the dependence of the average Hamming distance <ρ> 

= <ρ(SGk,SM)> between genotypes SGk of organisms in the population and the optimal 
chain SM on the generation number G. The parameters of simulation are: N = n = 100, β 
= 1, pm = 0.01, pl = 1, Т = 2. 
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Fig. 11 The dependence of the average Hamming distance <ρ> = <ρ(SGk,SM)> between genotypes SGk  of 

organisms and the optimal chain SM  on the generation number G; the fitness of organisms is 
determined by the expression (3a). Results are averaged over 1000 calculations . 

 
Fig. 11 shows that the dependence of <ρ> = <ρ(SGk,SM)> on G is almost the same 

as the curve 1 in Fig. 1. The distributions n(ρ) in the population for different moments 

of the first generation are very close to those ones shown in Fig. 2. These results 
demonstrate that the genetic assimilation is definitely observed in the additional model. 

According to Fig. 11, the asymptotic value <ρ> = <ρ(SGk,SM)> at large G is ap-
proximately equal to 6.2. The distributions n(ρ) in the population for different moments 
of the generation at the end of the evolutionary process are almost identical to the dis-
tributions in Fig. 4. So, the hiding effect is also observed in the additional model. 

Only in the case of simulations corresponding to the influence of the loading load, 
there is a small difference for two considered models. In this case, the simulation for 
the additional model is performed for the parameters N = n =100, β = 1, pm = 0.01, pl = 
1,    Т = 2, α = 1. The fitness is determined by the expression (4). The dependence of 
the average distance <ρ> = <ρ(SGk,SM)> between genotypes SGk and the optimal chain 
SM on the generation number G is very close to that of shown in Fig. 7. Fig. 12 shows 

the distributions n(ρ) for different moments of the first generation of the evolution. 
This figure demonstrates that the displacement of the distributions n(ρ) is similar to that 
of shown on Fig. 8, however, there is a small difference between these displacements. 
Nevertheless, the role of the loading load in the additional model is the same as in the 
main model. In particular, the loading load leads to the effective genetic assimilation 
and the significant acceleration of the evolutionary optimization. 

Analogously to Hinton and Nowlan (1987), we can estimate the efficiency of in-
fluence of learning on the evolutionary optimization as follows. The dependence of the 
value <ρ> = <ρ(SGk,SM)> on the generation number G in the considered case is very 
close to the plot shown in Fig. 7. The number of generations needed to find the optimal 
genotype is of the order of 100. The total number of organisms participating in the 
evolutionary search is of the order of 10

4
. This value is radically smaller than the num-

ber of organisms needed for finding the optimum without leaning, at random search 
(see the expression (3b)), which can be estimated by the value 2

100
 ~ 10

30
. 



 

The coincidence of the essential results for the main and additional models shows 
that the role of the parameter ε (see expressions (1) and (2)) in the main model is rather 
small. This parameter is essentially significant only for clear comparison of regimes of 
pure evolution and evolution combined with learning (see Fig. 1). 
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Fig. 12 The distributions n(ρ) in the first generation of evolution; the learning load is taken into account; the 

fitness of organisms is determined by the expression (4). The curve 1 is the distribution of ρ = 
ρ(SGk,SM) for the original genotypes before the learning. The curve 2 is the distribution of ρ = 

ρ(SFk,SM) for organisms after the learning, but before the selection. The curve 3 is the distribution of ρ 
= ρ(SFk,SM) for selected organisms. The curve 4 is the distribution of ρ = ρ(SGk,SM) for the genotypes 

of selected organisms at the end of the generation. Results are averaged over 10000 calculations. 

 

Thus, the comparison with the approach by Hinton and Nowlan (1987) demon-
strates that in the framework of this approach, we can design the model, which reveals 
actually the same properties of the interaction between learning and evolution as the 
main model. 

The analysis of both models shows that a) the genetic assimilation, b) the hiding 
effect, and c) the significant acceleration of the genetic assimilation and the evolution-

ary process under the influence of the leaning load are observed in these models under 
the following assumptions: 

1) Each organism of the evolving population has a genotype and a phenotype. 
2) The genotype and the phenotype are chains of symbols; the both chains 

have the same form. 
3) Genotypes of organisms are transmitted from parents to descendants with 

small mutations. The genotype of the organism is not changed during its 
life. 

4) The initial phenotype of the organism at its birth is equal to the organism 
genotype. 

5) There is a certain optimal chain, which is searched for by means of learning 
and evolution. The optimal chain has the same form as the genotype and the 

phenotype. 
6) The phenotype is essentially adjusted by means of learning during the or-

ganism lifetime. During learning, the phenotype moves towards the optimal 
chain. 

7) The selection of organisms into a new generation occurs in accordance with 
final phenotypes of organisms. 



 

Discussion and conclusion 

Let us discuss some particularities of the considered models of interaction between 

learning and evolution. The simple method of learning was used in the models, namely, 

the method of trial and error. Nevertheless, we can consider the analogy between this 

method and more intelligent approaches. In particular, Karl Popper (1979) analyzed the 

following scheme of scientific cognition: 

 

P1 → TT → EE → P2, 

 

where P1 is the initial problem; TT is the tentative theory; EE is the error elimination 

and P2 is the next problem. Similarly, in our scheme of learning we select a particular 

symbol SPki of the phenotype (analogously to P1), test changes of this symbol and fix 

certain value of this symbol (analogously to TT and EE), and then analyze the next 

symbol (analogously to P2). Our consideration is simple, however, it characterizes gen-

eral features of analyzed processes. 
We can also note that the considered process of learning is to some extent similar 

to the evolutionary process. Both processes include 1) random changes of symbols and 
2) selection of such combination of symbols that corresponds to the movement toward 

the optimal chain. 
It is important that our model can take into account both the learning load and the 

learning advantage. These features can be characterized by the expression (4). The term 
exp(–αd) corresponds to the learning load, whereas, the term exp[–βρ(SFk,SM)] charac-
terizes the learning advantage. 

It should be underlined that our analysis essentially uses the quasispecies model 

(Eigen, 1971; Eigen & Schuster, 1979). Basing on this model, it is sufficient to consid-
er only single significant variable, the distance to the optimum ρ. This ensures the clear 
quantitative analysis of mechanisms of the interaction between learning and evolution. 

In general, we investigated the processes of the evolutionary optimization and the 
optimization by means of learning, as well as the interaction between these processes. 
These processes are essential in cognitive architectures. In our models, these processes 

are simple and clear, therefore understanding obtained in our analysis can be used in 
investigations of cognitive architectures. 

Moreover, we can also try to analyze the evolutionary roots of our human thinking, 
to analyze the evolutionary reasons of origin of our human intelligence. There is varie-
ty of researches that correspond to this direction of possible interesting investigations 
(Taylor & Gray, 2014; Santos & Rosati, 2015; Turchin, 1977; Red’ko, 2015, 2016). In 

particular, we can consider relations between of a priory “pure reason” (Kant, 
1781,1783) obtained via biological evolution (Lorenz, 1941/1982) and cognitive prop-
erties obtained via individual learning. 

Returning to results of our simulation, we can state the following. The mechanisms 
of the interaction between learning and evolution have been investigated. 

The mechanism of the genetic assimilation is studied in details. It is shown that the 

genetic assimilation takes place as follows. The phenotypes of modeled organisms 
move towards the optimum at learning; then the selection in accordance with final phe-
notypes takes place; the genotypes of selected organisms also move towards the opti-
mum. It is shown that the genetic assimilation can lead to a radical acceleration of the 
evolutionary search. 



 

The mechanism of the hiding effect is analyzed. This effect means that strong 
learning inhibits the evolutionary search for the optimal genotype, if this learning in-
creases the chances of finding a good phenotype regardless of the genotype. Our simu-
lation demonstrates essential features of the hiding effect. 

The influence of the learning load on the interaction between learning and evolu-
tion is studied. It is shown that the learning load leads to the effective genetic assimila-
tion and to a considerable acceleration of evolution. 
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Appendix: Results of estimation of efficiency of evolutionary algorithms 

The estimations (Red’ko & Tsoy, 2005, 2006) were made for the model of quasispecies 

(Eigen, 1971; Eigen & Schuster, 1979). This model describes the evolution of the pop-

ulation of organisms Sk; each organism Sk is determined by the chain of symbols Ski, 

symbols take two values: Ski = 0 or Ski = 1; i = 1,2,…,N; k = 1,2,…,n; N is the length of 

chains; n is the number of organisms in the population. The fitness of an organism Sk 

decreases exponentially with the Hamming distance ρ(Sk,SM) between Sk and the cer-

tain optimal chain SM (SMi = 0 or 1; i = 1,2,…,N): 
 
f(Sk) = exp[–βρ(Sk,SM)] ,                (5) 
 

where β is the parameter of selection intensity. 
The evolutionary process consists of a number of generations; each generation 

consists of a) the selection of the organisms into the next generation that is performed 

by means of the method of fitness proportionate selection and b) the mutations that are 
random replacements of symbols Ski. The probability of changing of any symbol in one 
generation at mutations is equal to pm. The probability of the selection of a particular 
organism Sk into the new generation is proportional to its fitness f(Sk). It is assumed 
that N, n >> 1 and 2

N
 >> n (N, n = const). The initial population consists of random 

organisms, so the characteristic distance ρ = ρ(Sk,SM) between the organisms Sk of this 

population and the optimal chain SM is approximately equal to N/2. 
New organisms having small values ρ appear in the population owing to mutations 

and are fixed in the population by means of the selection. The characteristic number of 
generations   G–1, which is needed to reduce the mean value ρ in the population by 1, 
can be estimated as follows: G–1 ~ Gm + Gs. Here Gm ~ (Npm)

–1
 is the characteristic 

number of generations that is needed for mutations of organisms of the population, Gs ~ 

β
–1 

is the characteristic number of generations that is needed for replacement (via selec-
tion) of organisms, having ρ = <ρ>, by more preferable organisms, having ρ = <ρ>–1. 

The total number of generations GT of the evolutionary process, which is needed 
for finding the optimal chain SM, is of the order of GT ~ G–1 N , therefore, we have: 

 
GT ~ (pm)

–1
 + Nβ

–1
.                (6) 



 

 
Let us choose the parameters of the model for the given value N in such a manner 

to minimize the total number of organisms participating in the evolutionary search for 
the optimal chain SM. We use the following assumptions. 

1) The intensity of selection is enough large: β ≥ pmN; in this case we can neglect 
the second term in the expression (6), i.e., the speed of evolution is determined by the 
intensity of mutations. 

2) The intensity of mutations must not be too large, in order to exclude the possi-
bility of mutational losses of already found successful organisms, and the intensity of 
mutations must not be too small in order to ensure rather quick evolutionary search for 

the optimal chain SM. Taking this into account, we believe that pm = N
 –1

 (approximate-
ly one symbol in any genotype is changed at one generation). Consequently, from (6) 
we estimate the total number of generations of the evolutionary search: GT ~ N. 

3) We assume the minimal allowable population size n, at which there are no sig-
nificant losses of successful organisms as a result of the neutral selection. The charac-
teristic number of generations of the neutral selection Gn is of the order of the popula-

tion size n (Kimura, 1983; Red’ko & Tsoy, 2005): Gn ~ n. Gn should be no less than 
GT. Thus, the minimal allowable population size can be estimated as n ~ GT. 

Using these assumptions, we have n ~ GT ~ N. Finally, we obtain estimations of 
the total number of generations of the evolutionary process GT and the total number of 
organisms involved in the evolutionary search ntotal (ntotal = n GT): 

 

GT ~ N , ntotal ~ N
 2

 .               (7) 
 
Computer simulations (Red’ko & Tsoy, 2005, 2006) confirmed the estimations (7). 

Thus, the parameters of the effective evolutionary search are: n = N, pm = N 
–1

, β = 1. 
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